Bench to Bedside at Georgetown: Preclinical Science to Clinical Trials with Nilotinib

Charbel Moussa, MB, PhD
Laboratory for Dementia and Parkinsonism
Department of Neuroscience
Georgetown University Medical Center
Overview – experiments and regulations

What we did

How we got to clinical trials

The role of basic research in elucidating disease mechanisms

The role of pre-clinical science in modifying disease mechanisms

The importance of post-mortem human tissues to validate/correlate mechanisms

Our hypothesis to re-position anti-cancer drugs to treat neurodegenerative diseases

Nilotinib (Bosutinib) clinical trials - hypothesis, design and preparation
FACES WE KNOW

President Ronald Reagan - Alzheimer
Michael J. Fox - Parkinson
Lou Gehrig -ALS

Many other faces of beloved family and friends we also know?

Alzheimer’s disease (AD): 5.3 million people in the U.S. The number of AD and other dementias will rise to 16 million by 2050. The direct and indirect costs for the dementias was more than $148 billion in 2005. In 2008, there were 9.9 million family and other unpaid who provided 8.5 billion hours of care, valued at $94 billion (NINDS).

By 2060: The aging population is projected to increase form 1.96% to 4.33% > 85 years of age and 14.84% to 21.90% > 65 years – US Census Bureau
Life expectancy: male 77.1 (2005) to 81.8 (2050). Females 81.8 (2005) to 85.9 (2050). US Census Bureau

Can we eradicate these diseases: Average age for PD is 65 and AD is 85 years?
Parkinson’s disease (PD) is predominantly sporadic, but some disease-causing mutations suggest a genetic component in the pathogenesis of this disorder.

<table>
<thead>
<tr>
<th>Loci</th>
<th>Chromosome</th>
<th>Genetic variants (penetrance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNCA (PARK1/4)</td>
<td>4q21</td>
<td>A53T, A30P, E46K duplication, triplication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REP1, rs2736990, rs11931074</td>
</tr>
<tr>
<td>LRRK2 (PARK8)</td>
<td>12p12</td>
<td>R1441C/G/H, I2020T, Y1699C, G2019S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R1628P, G2385R, rs1994090</td>
</tr>
<tr>
<td>GBA</td>
<td>1q21</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N370S, L444P, others</td>
</tr>
<tr>
<td>MAPT</td>
<td>17q21</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H1 haplotype, rs393152</td>
</tr>
<tr>
<td>BST1</td>
<td>4p15</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs4538475</td>
</tr>
<tr>
<td>PARK16c</td>
<td>1q32</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs947211, rs823128</td>
</tr>
</tbody>
</table>

Autosomal dominant mutations in α-SNCA cause late onset (age-related>65 years) PD.
Mutations in the autosomal recessive gene *Parkin* are the most common causes (50%) of familial autosomal recessive early onset (Juvenile 14+ years old) PD.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Chromosome</th>
<th>Protein function</th>
<th>Clinical phenotype</th>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>parkin (PARK2)</td>
<td>6q25</td>
<td>E3 ubiquitin protein ligase</td>
<td>AR-JP, often indistinguishable from PD, but also with dystonia, reflex changes</td>
<td>Nigrostriatal degeneration, no inclusions</td>
</tr>
<tr>
<td>PINK1 (PARK6)</td>
<td>1p36</td>
<td>Mitochondrial serine-threonine kinase</td>
<td>AR-JP, similar to parkin</td>
<td>Unknown</td>
</tr>
<tr>
<td>DJ-1 (PARK7)</td>
<td>1p36</td>
<td>Unknown, possible role in stress response</td>
<td>AR-JP, similar to parkin</td>
<td>Unknown</td>
</tr>
<tr>
<td>ATP13A2 (PARK9)</td>
<td>22q13</td>
<td>Lysosomal cation transporter ATPase</td>
<td>Kufor-Rakeb disease (AR), parkinsonism and dementia</td>
<td>Unknown</td>
</tr>
<tr>
<td>FBXO7 (PARK15)</td>
<td>22q12</td>
<td>E3 ubiquitin protein ligase</td>
<td>Pallido-pyramidal syndrome (AR), dystonia and parkinsonism</td>
<td>Unknown</td>
</tr>
<tr>
<td>PLA2G6 (PARK14)</td>
<td>22q13</td>
<td>Phospholipase A2</td>
<td>NBIA-2 (AR), dystonia, parkinsonism, and dementia</td>
<td>Neuroaxonal dystrophy, iron accumulation</td>
</tr>
<tr>
<td>PANK2</td>
<td>20p13</td>
<td>Pantothenate kinase</td>
<td>NBIA-1 (AR), dystonia, parkinsonism, and dementia</td>
<td>Neuroaxonal dystrophy, iron accumulation</td>
</tr>
<tr>
<td>ATP7B</td>
<td>13q14</td>
<td>Copper transporter ATPase</td>
<td>Wilson's disease (AR), parkinsonism, liver failure, neuropsychiatric symptoms</td>
<td>Basal ganglia copper accumulation and degeneration</td>
</tr>
<tr>
<td>GRN</td>
<td>17q21</td>
<td>Progranulin, growth factor</td>
<td>Frontotemporal dementia (AD), dementia with or without parkinsonism</td>
<td>Ubiquitin/TDP-43 inclusions</td>
</tr>
<tr>
<td>ATXN2 (SCA2)</td>
<td>12q24</td>
<td>Unknown, enriched in Golgi apparatus</td>
<td>Spinocerebellar ataxia (AD), with or without parkinsonism</td>
<td>Polyglutamine-repeat nuclear inclusions</td>
</tr>
<tr>
<td>GCH1 (DYT5)</td>
<td>14q22</td>
<td>GTP cyclohydrolase I, dopamine biosynthesis</td>
<td>Dopa-responsive dystonia (AD), occasionally phenocopied by parkin</td>
<td>No nigral degeneration, no inclusions</td>
</tr>
</tbody>
</table>
Familial and sporadic PD are both characterized by death of dopaminergic neurons in the Substantia Nigra pars compacta (SN) AND cytosolic \(\alpha \)-Synuclein inclusions known as Lewy bodies (LBs)

PD (parkinsonism) and AD (dementias) share common pathological, neuroanatomical and clinical characteristics

FTD (TAU)/FTLD (TDP-43)
Can we halt neurodegenerative pathologies, including misfolded protein accumulation and pathogenic propagation? What are the possible quality control mechanisms for protein degradation or clearance!!

- **Route A**: Proteasome
- **Route B**: Golgi/ER
- **Route C**: Exosomal/exocytosis

Amyloids: Tau, Aβ, α-Syn, Prions Htg, TDP-43, etc.

Cell-to-cell propagation

Glial cells
What is Parkin?

- It is a cytosolic protein
- An E3 ubiquitin ligase
- Involved in proteasomal and autophagic degradation and aggresome formation
- Loses function in early onset autosomal recessive PD

ALSO
- Dysfunctional in neurodegeneration, independent of disease-causing mutations
Pre-clinical science is the place to start - 1

1- Understanding disease mechanisms
Pre-clinical science is the place to start - 2

2- Testing starts on the bench using post-mortem human brains

Human α-Synuclein ELISA in autophagic vacuoles form human samples (% control)

Human Aβ1-42 ELISA in autophagic vacuoles
Pre-clinical science is the place to start - 3

Th+DAB
Parkin+
GFAP+
DAPI

PLA: Parkin+beclin-1+
DAPI

Midbrain Ctl
Case # 2201

Midbrain PD
Case # 2315

Amyloids
Phagophore-AV10
Autophagosome-AV20
Lysosome: degradation

Interacts
Parkin
Beclin-1

1. Incubate with target primary antibodies
2. Add PLA probes PLUS and MINUS
3. Hybridize connector oligos
4. Ligase to form a complete DNA circle
5. Rolling circle amplification
6. Add fluorescent probe to reveal interaction

Control-cortex
Case# 1855

62μm
AD-cortex
Case # 1833

55μm

Control-Hipp
Case # 1352

48μm
AD-Hipp
Case # 1861

55μm

Control-caudate
Case # 1683

53μm
AD/PD-caudate
Case # 2352

52μm

Interacts
Pre-clinical science is the place to start
How is autophagy clinically exploited via tyrosine kinase inhibition?
Nilotinib and Bosutinib increase Parkin activity via self-ubiquitination

Ubiquitination Increases Parkin Activity to Promote Autophagic α-Synuclein Clearance.

Lonskaya I, Desforges NM, Hebron ML, Moussa CE.

Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance.

Lonskaya I, Hebron ML, Desforges NM, Schachter JB, Moussa CE.
Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson's disease models.
Hebron ML, Lonskaya I, Moussa CE.

Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance.
Lonskaya I, Hebron ML, Desforges NM, Franjie A, Moussa CE.

Tyrosine kinase inhibition facilitates autophagic SNCA/α-synuclein clearance.
Hebron ML, Lonskaya I, Moussa CE.
TKIs reverse the failure of Parkin-Beclin-1 interaction in transgenic models
More regulatory approval: EH&S and GUACUC

1- Lentiviral packaging and preparation (safety)

2- Stereotaxic animal surgery to transfer genes – what kind of animals

3- Drug treatment
Nilotinib and Bosutinib fail to clear α-Synuclein in Parkin−/− mice.
TKIs reduce extracellular plaques and intracellular Aβ in Tg-APP and WT, but not in parkin⁻/⁻ mice.
Possible mechanisms of Parkin activation and amyloid clearance

Normal conditions

- **Inactive Parkin**
 - Ubiquitin
 - Ubiquitination
 - Recycling
 - Clearance
 - Amino acids
 - Amyloids
 - Parkin interacts with Beclin-1
 - Phagophore-AV10
 - Maturation
 - Autophagosome-AV20
 - Fusion
 - Lysosome: degradation

TKIs

- **Parkin active**
 - Ubiquitin
 - Ubiquitination
 - Recycling
 - Clearance
 - Amino acids
 - Amyloids
 - Parkin interacts with Beclin-1
 - Phagophore-AV10
 - Maturation
 - Autophagosome-AV20
 - Fusion
 - Lysosome: degradation

Aging/Pathology

- **Inactive Parkin**
 - Ubiquitin
 - De-ubiquitination?
 - Parkin unstable
 - Degradation
 - Decreased solubility/inactivity

- **Proteasome**

TKIs

- **Proteasome**
TKIs mediate TDP-43 localization in transgenic TDP-43, but not Parkin−/−, mice.
TKI improves memory in transgenic TDP-43 but not Parkin-/- mice.

Before treatment:
- C57BL/6
- TDP-43

After treatment:
- TDP-43+DMSO
- TDP-43+Nilo
- TDP-43+Bos
TKI improves motor and cognitive behavior in transgenic TDP-43 but not Parkin-/- mice.
Pulsatile autophagy: an ON/OFF clearance strategy that exploits post-mitotic (non-dividing) neuronal biology to induce degradation of toxic intraneuronal debris, without causing the self-cannibalization seen in rapidly dividing tumor cells.

CLINICAL TRIALS !!

Debris accumulation: Tau, β-amyloid, α-Synuclein, TDP-43, Damaged organelles

- **Disease onset**
 - Time in years
 - Debris accumulation
 - Neurodegeneration

- **AUTOPHAGY ON**
 - Time in days
 - Nilotinib 4-8hrs
 - Bosutinib 6-12hrs
 - Parkin
 - Beclin-1
 - Autophagic clearance

- **AUTOPHAGY OFF**
 - Time in days
 - Nilotinib 4-8hrs
 - Bosutinib 6-12hrs
 - Parkin
 - Beclin-1
 - Re-accumulation

- **Halting neurodegeneration**

Lewy Body Dementia (LBD) is at the interface of PD and AD pathologically and clinically:
- No known cure
- Rapidly progressing, debilitating and extremely frustrating for caregivers
- These trials can also be applied to similar disorders like MSA, PSP and CBD
A new therapeutic concept

- This is a NOVEL life transforming technology because:

 1- It is a successful pre-clinical strategy to decrease Parkinsonism-linked α-Synuclein and Alzheimer-associated Tau and β-amyloid proteins

 2- This technology is a stark contrast with failed anti-AD vaccination therapies that target extracellular β-amyloid and leave the neuron vulnerable to the detrimental effects of intraneuronal accumulation of a variety of proteins, including α-Synuclein, TDP-43, β-amyloid and Tau
Design, preparation, and execution of clinical trials

- Designing clinical trials (types and disease indication)
- Patient population (Safety, inclusion criteria, primary, secondary and tertiary outcomes)
- Therapeutics (drugs, dosing and safety)
- Trials duration and recruitment
- FUNDING
- IRB approval
- FDA approval – safety, safety, safety (IND)
- Treatment (CRU) and data collection
- DSMB and data analysis
- Recommendations (safety, efficacy, continuation etc)
- More FDA to licensing
A Georgetown University journey from bench to bedside

• This invention is owned by Georgetown

• It has the potential to eradicate neurodegenerative diseases and decrease the national economic and social burdens (invest in a cure/nursing home?)

• We are working with pharmaceutical companies (Merck and Janssen collaboration) to develop more TKIs

• We are talking to Novartis (Nilotinib) and Pfizer (Bosutinib) to provide the drugs for clinical trials
Laboratory members:
Charbel Moussa, MD. PhD

Post-Docs
Irina Lonskaya, PhD
Preety Khandelwal, PhD
Ashot Shekonyan, MD, PhD
Wenqiang Chen, MD

Lab Manager/ Research Assistant
Michaeline Hebron, MS
Sandra Selby, RN
Alexander Herman, MS

Internship /Graduate Students
Norah Algarzae
Nicole Desforges
Odalys Amador
Kayde Sharpe
Kithmini Weersinghe
Alexander Franjie
Catherine Domingo
Irin Nizam
Michael Colon
Shay Seager
Lanier Heyburn
Yue Feng
Zainab Ibrahim
Badryah Omar

Funding:
- NIH-National Institute on Aging
- Merck & Co
- Alzheimer’s Association
- Cure Foundation-Charleston Conference on Alzheimer’s Disease
- Michael J. Fox. Foundation
- National Parkinson’s Disease Foundation
- Georgetown University
- Georgetown University- Music for the Mind
- Georgetown University – Regents Board
- Langer Family Charitable Association

THANK YOU!

Collaborations:
- Jim Driver, PhD (Electron Microscope Facility- Montana)
- Joel Schachter, PhD (Merck Neuroscience Laboratories)
- Milton Brown, MD, PhD (Drug Discovery Laboratory- Georgetown)
- Bradoslav Goldman, PhD (Proteomics and Mass Spect- Georgetown)
- Fernando Pagan, MD (Movement Disorders Clinic, GUH)
- Brent Harris, MD, PhD
- Mark Burns, PhD
- Joseph Neale, PhD
- Ben Wolozin, PhD
- Italo Mocchetti, PhD
- Scott Turner, MD. PhD (Memory Disorders Program, GUMC)