How Well Do Required Statistics Courses Prepare Students for Higher Level Science?
The Undergraduate Statistical Education Study
Dev Crasta, M.A. & Barbara Masi, Ph.D.

INTRODUCTION

Statistical Literacy:
- Defined by Wallman (1993) as “ability to understand and evaluate statistical results that permeate everyday life”
 - Considered key component of modern citizenship
 - Becomes increasingly important over time
- Is the basic minimum threshold for understanding and interpreting results of scientific experiments.
 - Is that threshold enough?

Undergraduate Science Majors
- Need to have a higher level of statistical fluency
 - English Majors don’t just meet literacy requirements in English
 - Ability to go beyond comprehension and analysis
- Ben-Zvi & Garfield (2004): Levels of Statistical Literacy Framework
 - Statistical Literacy: Understanding statistical results presented
 - Statistical Reasoning: Effectively using statistics to communicate
 - Statistical Thinking: Understanding how/why to conduct analyses

Introductory Statistics Courses
- Required to major in most physical, social, and computing sciences
- Offered in multiple formats across departments
 - Common content considered “essential”
- Assessed at the Statistical Literacy Level
 - Lecture content does go to higher levels
 - But to students internalize higher-level skills?
 - Do the skills generalize?

PARTICIPANTS & PROCEDURE

Participants
- 136 Students recruited from STT 211 & STT 212 class
 - Collection continues in remaining classes
- Student Demographics:
 - 45% Male
 - 71% Native English Speakers
 - Status: 10% Freshman; 56% Sophomore; 20% Junior; 14% Senior
 - Majors: 40% Economics/Business; 33% Physical Sciences; 15% Social Sciences

Procedure
- Optional review session given within 1 week of exam covering the same topics
 - Recruitment Incentives: Extra credit for attending review
 - Students assessed when they’re maximally familiar with material
- Assessed at the Statistical Literacy Level
 - Session format:
 - Review gave assessment questions and then reviewed them with class
 - Interested participants were able to opt into the research study
 - Declining participants left ID field & demographics blank (packets destroyed)
 - Assessment of interested participants then linked to their exam scores

Measures
- Questions representing 3 content areas:
 1. Categorical differences (Chi-Square)
 2. Group Differences (t-tests)
 3. Principles of Hypothesis Testing (Interpreting p-values & significance)
- For each content area, 3 questions were asked:
 a) Application Qs: Literacy questions from old exam nested in language from an actual current article.
 b) Reasoning Qs: Retrieved from ARTIST inventory (Garfield et al., 2005)
 c) Thinking Qs: Retrieved from ARTIST inventory (Garfield et al., 2005)
- Questions selected to minimize calculation

Scoring Criteria
- Grading criteria designed after holistic reading of all responses by first author (DC)
 - Points granted for specific desired features of answer
 - (e.g., One point for each axis of requested table)
- Validation:
 - Each criterion individually correlated with students’ exam averages
 - Dropped any criterion where \(p > .1 \) (un correlated with exam performance)
 - Questions with no remaining criteria excluded from present analyses
 - 2/9 questions dropped this way
 - Still 2 or more questions for each type & content category
- Criteria averaged within each question type to identify % of possible points earned

RESULTS

Identifying Predictors of Exam Performance
- Uncorrelated: Native English, Major, & HS Statistics Exposure
- SAT, Class year, & Hours Studying do not significantly predict exam scores in multiple regression
- GPA the only relevant covariate

Means and Correlations of Variables in the Analysis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>GPA</th>
<th>Exam</th>
<th>Reason</th>
<th>Thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPA</td>
<td>3.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam Grade (Literacy)</td>
<td>90%</td>
<td>.596**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reasoning Questions</td>
<td>67%</td>
<td>.327**</td>
<td>.344**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thinking Questions</td>
<td>31%</td>
<td>.269**</td>
<td>.151</td>
<td>.142</td>
<td></td>
</tr>
<tr>
<td>Application Questions</td>
<td>41%</td>
<td>.127</td>
<td>.259</td>
<td>.388**</td>
<td>.080</td>
</tr>
</tbody>
</table>

Note. * = p<.05; ** = p<.01

CONCLUSIONS

Do statistical literacy skills generalize into applied contexts?
- YES: Exam scores positively correlated with performance on application questions
- HOWEVER: Performance on application questions was 41%
- Suggests that while literacy-in-context utilizes same skills, it is more difficult
- IMPLICATIONS: Students need to develop familiarity with field-specific language
- A reasonable amount of practice will likely bridge this gap
- Practice could occur simply by participating in upper-level science courses

Do statistical literacy skills generalize into statistical reasoning skills?
- SORT OF: Exam scores positively correlated with performance on reasoning questions
 - Correlation diminishes when controlling for prior academic achievement
- RELATIVELY STRONG: Students earned 66% possible points
 - Students DO complete reasoning tasks during class (HW)
 - Professors DO describe reasoning problems during class (Class Examples)
- IMPLICATIONS: Reasoning skills emphasized; students are not held accountable
 - High achievers commit to learning, studying, retaining information
 - Other students may neglect material that “Won’t be on the final”
 - Assessing, diagnosing, and addressing difficulties might close the gap

Do statistical literacy skills generalize into statistical thinking skills?
- NO: Exam scores uncorrelated with performance on thinking questions
- POOR PERFORMANCE: Students earned 31% possible points
 - Common comment: I can use p-values, but I don’t know what they are
 - Statistical thinking described in lecture, but not in interactive ways
- IMPLICATIONS: Thinking skills are underemphasized
 - Prior academic achievement above/beyond class score predicts statistical thinking abilities
 - Suggests students are developing thinking skills outside of the classroom
 - If statistical thinking is expected in higher level courses, students need:
 1. Required higher level stats classes
 2. Stats focused research methods classes
 3. Stats review & explicit discussion in higher level content courses

ACKNOWLEDGEMENTS

This material is based on work supported by the National Science Foundation under Grant No. DUE-1231286.

Professors helping with recruitment and their students:
- David de Jong
- Maria McDermott
- Nicholas Zaino
- Daniella Presgraves

Consulting Professors:
- Yilmaz Kucuk

For further questions, please contact dev.crasa@rochester.edu