INTERNALLY ACTUATED ROVERS FOR ALL-ACCESS, LOW-GRAVITY SURFACE MOBILITY

Ross Allen
Adviser: Marco Pavone
Outline

• Motivation
• Preliminary Design
• Prototype and Experimentation
• Computational Dynamics Model
• Motion Planning and Control
• Conclusions
• Future Work
Motivation

- Small Solar System bodies, e.g. asteroids or Martian moons, represent critical venues for space exploration
 - “Stepping stones” for human exploration
 - Potential wealth of natural resources
 - Insight into early Solar System history and planetary processes [2]
 - Comets as potential seeds for life on planets [20]
- Proper investigation of these environments requires extended surface contact at multiple locations [2]
 - E.g. characterization of regolith mechanics

Need for precise mobility in milli- to microgravity environments
Challenges

- Current mobility techniques are poorly suited for low gravity environments [4]-[7]
 - Wheeled rovers bound to very low speeds due to lack of traction
 - Legged systems are mechanically complex and depend on soil mechanics
 - Thrusters increase complexity and may contaminate surface
- Furthermore, any external, moving component is susceptible to dust contamination

These challenges motivate the use of internally actuated mobility platforms
Mobility Concept

- Rotational kinetic energy is converted to translational kinetic energy
- Torque between hub and flywheel can induce ground forces that can generate hopping or tumbling motion
Mission Structure

- Deploy one/several rovers
- Supported by orbiting mothership
- Applicable to a range of celestial small bodies
- Due hazardous environment, rovers should be quasi-expendable

Goal: Simple, low-cost, scalable mobility platform
Hedgehog: Spacecraft/Rover Hybrid

- Instrument port could be used for optics, sampling, etc.
- Power subsystem undefined. Solar is one option.
- Orthogonal faces simplify motion planning and control.
- Vertices provide traction in hard terrain.
- Edges distribute force to provide traction and avoid sinkage in soft terrain.
- Subsystems and payload.
- Various foot/spike designs depending on mission.
- 3 Orthogonal flywheels and DC motors.
Prototype and Test Stand

First Generation:

Second Generation:
Prototype and Test Stand

Third Generation:
Computational Dynamics Model

- Microgravity environment very difficult to physically simulate
 - XYZ-gantry crane: limited degrees of freedom
 - Drop towers/parabolic flights: limited range/time
 - Buoyancy tanks: exogenous fluid dynamics

Need for computational modeling to aid in design and testing

Computer model of prototype showing the hub (cube), spike tips (blue grid), and principal axes (black lines)
Demonstrations
Motion Control

- Even with perfect knowledge of state in a disturbance-free environment, motion planning and control is difficult
 - Gyroscopic effects of spinning flywheels strongly couple rotational degrees of freedom
 - Impulsive ground contact of non-spherical craft can generate unpredictable hopping vectors

Need for simple, robust control algorithm that can be executed semi-autonomously
Hybrid Control Algorithm

Spin-up:
- Apply torque to flywheels to reach desired angular velocities
- Closed-loop control to prevent undesired craft tumbling

Coast (default):
- No torque applied until switching conditions met
- Used while craft is settling from hop

Flywheel Braking:
- Apply constant braking torque until flywheels come to rest w.r.t. craft
- High torque minimizes ‘gravity loss’ torque

- ✓ On Ground
 - ✓ $\omega_{\text{flywheel}} = \omega_{\text{objective}}$
 - ✓ $\omega_{\text{flywheel}} < \omega_{\text{objective}}$
 - ✓ $\omega_{\text{flywheel}} = 0$

- ✓ $\omega_{\text{flywheel}} = \omega_{\text{objective}}$
- ✓ $\omega_{\text{craft}} = 0$
Motion Control Results

- 4 arbitrarily placed waypoints
- 500 seconds of real time
- Avg. speed of ~1.6 cm/s
- Order of magnitude faster than wheeled systems [5]
Motion Control Results

3D Trajectory of Center of Mass

- Hopping
- Tumbling
Conclusions

- Conceptual design of simple, low-cost, fault-tolerant mobility platform for low gravity environments
- Developed computational dynamics model to design and test internally-actuated, microgravity mobility platforms
- Prototype and experimentation of mobility platform in 5DoF, milli-gravity test stand
- Preliminary validation of computer model using experimental results
- Control algorithm that demonstrates precision waypoint tracking
Future Work

- Integrate prototype and test stand to test motion control algorithm
- Non-uniform terrain and gravity in simulation and experimentation
- Design of spikes/feet
- Parabolic flights
- Ground contact model that accounts for granular media
- Power subsystem
- Sensing/localization subsystem
- Optimize control algorithm for time-of-travel or power usage
Questions?
References

