INSTRUCTOR’S FOREWORD

Game Studies represents an expanding and intellectually exciting area of scholarship—and, yet, most of my students in my “Rhetoric of Gaming” classes have never heard of it. They enter the class excited by their own love of videogames and empowered to find themselves in an academic context that encourages them to engage intellectually with a medium that has played such an important role in their lives.

Tina was exactly this student when she started my class. Her engagement with gaming was already both personal and practical; she both played games and, as a CS student, had even programmed a few. This rich vantage of both player and designer, consumer and coder, allowed her to quickly take the next step toward Game Studies. Her research topic reflects her interests: she proposed to look at glitches—those bugs in computer code that caused games to act in unexpected ways. Where others saw “bugs,” she saw opportunities; where other saw problems, she saw possibilities.

Tina took this same perspective when approaching researching and writing this essay. The topic, clearly, was a challenging one. While she was increasingly intrigued by the “culture” of glitches, most of her early sources focused on the technical aspects of glitching—in fact, what she discovered was that she was one of the first to really explore this topic from a more cultural perspective. Once again, however, Tina saw opportunities in what others might have seen as an obstacle. Her research process became adaptive, creative, and expansive; in reflecting on her research, she noted, “I’ve gone through books, art books, magazine articles, journals, videos from the Microtext Center, videos from online, academic databases, blogs, interviews, and surveys. I looked through the bibliographies of each source I had… I even took pictures at the local Famine Convention of MissingNo. cosplayers and products.” Her ability to synthesize a variety of sources to construct an original argument contributes greatly to the power of this piece.

Tina could have chosen an “easier” topic to write on that would have been safer and more predictable. However, she chose a topic that challenged her, pushing her toward new research methodologies and an original line of analysis. In a sense then, Tina benefited from her own research glitch, and in doing so she makes an important contribution to Game Studies that invites her readers to develop their own more nuanced understanding of contemporary gaming culture.

—Christine Alfano
A video game developer is like a god; from the environment to the inhabitants, he molds an entire world from scratch. He determines the type and amount of interaction a person can have with each aspect of the world, commanding the freedoms that each individual has within it. Who they can speak to, what they can interact with, where they can explore, how much they can involve themselves with the setting of the world—all of these things fall into his hands.
Unfortunately, giving freedom comes with risk. The more liberties a developer chooses to hand to the player, the greater the possibility of errors falling into the virtual reality he has created. When a game becomes “realistic,” more opportunities for and combinations of choices unfold, allowing the players to truly immerse themselves in the game and experience a sense of freedom. Meanwhile, opportunities for glitches—unexpected errors in programming or gameplay—become exponentially numerous. Consequently, developers and quality assurance testers have to invest more time and resources to weed out these errors. Despite all efforts, however, many glitches sneak past unnoticed and remain hidden in the depths of games, waiting for unsuspecting players to discover them. To some, glitches are malignant existences, as they can interrupt gameplay, trigger system crashes, and corrupt valuable data. However, not all gamers react negatively to these digital fiends; some have practically become enthused by the idea that there are glitches hiding within their favorite games. This phenomenon has created progressively expanding glitch subcultures, calling into question the traditional view of seeing all glitches as innately detrimental. While glitches may be costly in the developers’ perspectives, they can have unanticipated but beneficial qualities that open players up to unique experiences both within and outside of the game.

OVERVIEW OF GLITCHES

Glitches are errors in software that occur due to programming anomalies, design flaws, or hardware inconsistencies. They are created unintentionally, unlike “Easter eggs” or cheat codes that are planted in software on purpose by the designers. Glitches can be caused by model discrepancy (a hitch between the graphical representation of the world and the code that runs beneath it), programming (bad code, unchecked logical fallacy, or undeleted test code), or unanticipated input (bizarre maneuvers, unexpected button, camera maneuvers, information overload, or hardware glitch) (Bainbridge).

Figure 1: Invalid value change glitch in *Pokeman Blue*.

1 “Easter eggs” are hidden surprises, often joke content having little to do with the actual game, that are intentionally implemented by developers. For instance, *Diablo II* featured a “Secret Cow Level,” where the player is sent to an alternate universe in which cows rule the world.
Some glitches are more intrusive to game play than others. It is generally easy to determine whether a glitch has occurred, because it causes a disturbance to the perceived “norm” of the game. Players should be able to distinguish between normal and abnormal events through the expectations established by the developers and the context of the game. For instance, if a human character with no special powers suddenly becomes able to walk through walls or fly, the player is able to detect the incongruity of the event and determine that a glitch has taken place.

Lewis, Whitehead, and Fruin, computer scientists at the University of California, Santa Cruz have outlined a taxonomy of these visible effects. Often, they reasoned, glitches manifest themselves in the game through invalid value changes, such as in *Pokémon Red Blue*, where an item could be multiplied to exceed the maximum amount displayable, causing the counter to go haywire (See Figure 1). Other times an object may be out of bounds, taking a character or another object into an unexpected region—typically an area not intended to be accessible. One popular example was in *Super Mario Bros.*, where the player could jump Mario into the walls (See Figure 2) and access what fans have dubbed the “Minus World,” a sequence of playable glitch levels containing altered graphics and enemies. The taxonomy also identifies invalid graphical representation as a common effect of glitches. This phenomenon occurs where the graphics of a game become altered or deformed, such as in the PlayStation 2 game *Rocky*. (As seen in Figure 3, Rocky’s chin, eyelids, and lips are missing from the model of his face. Besides these relatively straightforward outcomes, unanticipated artificial intelligence actions or reactions are more unpredictable and difficult to identify. For instance, Figure 4 depicts the swing
set physics gone haywire in *Grand Theft Auto IV*, causing a car to be propelled off a regular swing with destructive force.

One of the main causes of glitches is a developer attempting to implement a greater sense of ‘freedom’ for the players. In order to create the illusion of freedom in a game, implementers have to form an artificial world that interacts naturally to a human player. Developers strive to make settings more like the real world, allowing users to immerse themselves and forget that they are playing a game. In essence, they want to suspend the players’ disbelief, creating the illusion of an alternate “reality.” This introduces a great deal of intricacies to the game, and the more complicated a game, the more likely it is to contain glitches. In fact, many modern games utilize physics engines, multiplayer capabilities, advanced CGI, “sandbox” settings, and other high-level technologies designed to simulate the real world that introduce both known and unknown programming complexities into a game (Godinez).

Known programming complications involve the actual development of the game, including how to embed artificial intelligence into the Non-Playable Characters (NPC’s) or how to link the visual representation of the game’s world with the functional code. Unknown complications result from code that function absolutely correctly, but in unexpected ways. For instance, in *The Elder Scrolls IV: Oblivion*, developers implemented a Radiant AI system that allowed NPC’s to behave on their own, which resulted in multiple unforeseen glitches. One such glitch was where the player was required to talk to a prisoner in a jail, but during testing, the prisoner was sometimes found dead in his cell before the player could even reach him. Todd Howard, the game director, explained this phenomenon. “Turns out, the guards in the jail could run out of food and get hungry,” he noted. “They would then go down and kill the prisoner to take his food. This all happened when the player wasn’t there. I still don’t remember how we figured it out. But the solution was easy: more guard food” (Godinez). Thus, testers have to check for both expected and unprecedented glitches. To complicate the testing process even more, correcting one glitch may lead to other glitches. Within all the complications, time constraints, and limited resources, it is difficult for developers of complex games to fix all glitches before the release date.

COSTS OF GLITCHES

In order to begin considering the positive aspects of glitches, one fact must be recognized: glitches can be costly. They are a scary entity to developers—a presence
that can neither be ignored nor completely terminated, constantly sapping resources and threatening companies’ reputations. Too many glitches can reflect badly on a game and its company, resulting in a loss of sales. So naturally, programmers aim for a glitch-free game that fulfills all of their expectations without inconsistencies. However, sometimes it is not practical for the developers to try to weed out every glitch, even the ones that they find, due to limited resources and time. Therefore, developers have to establish a standard to determine whether a bug is fatal to the game or minor enough to leave alone.

Glitch testing requires a large amount of resources, namely “time, money, and sanity” (Hind). The labor cost of merely testing for these glitches is heavy, and often takes a physical toll on quality assurance testers who may be testing for bugs that will never be fixed. When a glitch is found, the exact sequence of triggers has to be determined, which often means testing a section of the game for hours upon hours until the sequence becomes bored into the tester’s mind. Watching these repetitive movements on the screen for extended periods of time often strains the eyes and causes headaches, as I experienced while watching the testing demo Prepared PS2. Predictably, turnover is high in the game testing industry, and the cost is high to both testers and manufacturers.

Considering all this, is it worth it for developers to try to eliminate all the bugs in a game? Finding an efficient debugging cycle is a constant struggle for developers. The traditional approach to testing is to extensively enter all potential issues, including the minor ones, into a database and have the triage team address them later. But this method can be a waste of effort and may lead to stress when the team needs to determine which important issues actually need to be addressed. Furthermore, it is necessary to fix critical glitches earlier in the development cycle, because the cost of fixing defects increases significantly as development progresses (Hind). Therefore, it is crucial to delineate between “minor” and “major” bugs depending on what
stage of development the game is in. Fixing any glitch is costly in the later parts of construction; even trivial bugs can take hours to resolve. Consequently, games often ship with up to hundreds of known bugs tagged as “won’t fix” (Hind).

Hence, there is much work to be done in improving the efficacy of the testing cycle. Hind and Bell, in their article in *Game Developer*, propose one alternative that focuses on queuing only substantial issues and efficiently eliminating them while ignoring negligible ones. Instead of developers arbitrarily choosing which glitches to tag as “won’t fix”, wouldn’t it be worthwhile for them to consider which glitches are more “positive” to gamers? If they could research which glitches are more likely to induce positive reactions from gamers, they can set a better fix criteria, and then deliberately ignore minor glitches that do not meet the standard during the testing phase. This would streamline the process greatly while allowing less rigorous testing, especially with non-critical bugs. This process is less costly than the traditional method, allowing developers to allocate the spare funds elsewhere.

A problem, then, is how to determine with glitches are “positive” in the first place. There is no clear cut-off, but delving into the minds of glitch exploiters can give a clearer explanation of which glitches are “good” or “bad.” If developers can master this fine craft, they may be able to cut costs and produce glitches that improve their game’s reputation, rather than ruin it.

MOTIVATIONS FOR GLITCH EXPLOITATION

National Science Foundation sociologist William Sims Bainbridge and Yale graduate Wilma Bainbridge note in the *Social Science Computer Review* that the “standard computer science response to errors… is to eliminate them,” while the “common video gamer response… is to exploit them.” Why are gamers often so forgiving of the glitches they discover in games? In fact, why do they react positively? John Rolfe from popular game reviewer *ScrewAttack* remarks, “Maybe it’s because we take pride in finding flaws that the programmers overlooked, or maybe it’s because we like playing outside the rules—to go explore” (*Angry Video Game Nerd*).

What factors determine which glitches are “good” or “bad”? One indication is the type of glitch. Different types of glitches achieve different levels of “excitement” from players. According to the results from Bainbridge’s study (See Figure 6), users found glitches resulting from bizarre maneuvers, which usually involve behaviors beyond what the developers intended, undeleted test code, holes in boundaries, and hardware glitches to be the most “exciting,” and thus most likely to incur
positive responses from the gamers. The most interesting glitches “offer the player a completely new aspect of game play, affect the game over the long term, or greatly alter multiple facets of the game” (Bainbridge).

<table>
<thead>
<tr>
<th>Table 1: Categorization of 580 Video Game Glitches by Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model discrepancy</td>
</tr>
<tr>
<td>Weak region</td>
</tr>
<tr>
<td>Hole in boundary</td>
</tr>
<tr>
<td>Programming</td>
</tr>
<tr>
<td>Bad code</td>
</tr>
<tr>
<td>Unchecked logical fallacy</td>
</tr>
<tr>
<td>Undeleted text code</td>
</tr>
<tr>
<td>Unanticipated input</td>
</tr>
<tr>
<td>Camera maneuvering</td>
</tr>
<tr>
<td>Unexpected button</td>
</tr>
<tr>
<td>Bizarre maneuver</td>
</tr>
<tr>
<td>Hardware glitch</td>
</tr>
<tr>
<td>Overload of information</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Figure 6: Table from Bainbridge’s study showing categories of glitches and corresponding levels of excitement.

SURVEY ON GLITCH EXPLOITATION

In order to delve deeper into which glitches were positively viewed, I conducted an online survey to collect user input regarding glitch experiences and personal reactions toward these occurrences. Overall, there were 21 respondents, all of whom played games regularly or had experience playing games frequently. Though a small sample, many of those surveyed described their personal experiences with glitches in detail, providing important insight into the typical gamer’s approach to glitch phenomenon.

In my findings, a common characteristic of “positive” glitches is that they are helpful to the players in some way, such as providing them with additional lives or items, or are interesting enough on their own to sustain attention. Glitches that hinder progress or corrupt data are generally negatively viewed, as they are considerably damaging to the game play without adding perceived benefits. The general consensus was that glitches provide a different perspective on the game. Many gamers noted that they enjoyed the task of finding and exploiting glitches. In fact, a player could derive value from glitches in two ways.

One way is that the ability to exploit glitches can become proof that a gamer is smarter than the developers. Aside from instilling self-esteem, the status of the gamer also rises
in the gaming community. Survey respondent Wood commented, “Differing from cheat codes, a glitch often requires skill and experience to recreate. Thus, a sign of a gamer, rather than a noob.” Glitches then become a measure of skill and expertise. Knowing about these glitches and being able to exploit them marks a true gamer. Plus, according to respondent Tseng, who is acquainted with various game developers, it adds to the competitiveness within the gaming community:

Glitches, and the related knowledge of and ability to take advantage of those inner workings, are part of what makes competitive gaming, well, competitive — there’s dedicated gamers and then there are obsessed gamers. Glitches offer players another level of complexity to explore and options for which to compare testosterone levels + brain activity + boasting rights.

The second value that glitches provide is the ability to explore outside of the intended bounds of the game. Tseng commented, “It’s like going to a natural history park and then stepping beyond the yellow tape and paved walkways. There’s something fun and more adventurous about doing things that you aren’t directly told to do.” A gamer and hobbyist developer, Dessonville, added, “It’s just taking the game, as a whole, and finding loopholes through the flaws of the designers and programmers. It happens. It can be fun, interesting, and adds a new dimension to the game.” The whole ordeal becomes a bit like treasure hunting and viewing the game in a completely different point of view. Overall, it becomes a thrill to see something that they weren’t “supposed to.”

While glitches can add value in unprecedented fashions, the appreciation that gamers have for glitches is also dependent on the setting. In a multiplayer setting, exploiting glitches is viewed negatively as a form a cheating, and a smaller percent of gamers choose to partake in the activity. There’s apparently a fine line between utilizing glitches in single player and multiplayer settings, despite the minor change. Dessonville noted: “It’s irritating when someone can take advantage of a glitch to get an advantage over other players. It’s just “unfair” per se. It’s not a true merit to skill or anything. It’s just them being trolls.”

However, other people transfer the same feeling toward glitches in single player settings into multiplayer ones. I spoke to a person who had experience in exploiting bugs in multiplayer settings to gain an advantage over other players. He exploited a bug in a voting reward system on a Ragnarok Online server that gave out more award coins for every previous award coin that his avatar was holding. He was able to max-
level his character within three days before being banned along with his comrades. He said that he did it mainly for “the kicks,” and since he did not feel a close connection to the community on that new server, there was no risk of loss. He noted that there was an excitement to knowing about a glitch; the potential of it being against the rules of the game only added to that feeling, along with the excitement of keeping under the radar. “It’s like, the thrill of keeping a big secret. Maybe more like an inside joke. It disappears when everyone finds out and is okay with it.” The key requirement for those who choose to exploit glitches in multiplayer settings is that they feel the benefits are worth the costs. For this particular respondent, he did not feel invested in the server, making the allure of gaining advantage, even by unfair means, more enticing than abiding by the law of the game.

There is some psychological insight on the underlying reasons why gamers might feel so attracted to glitches overall. Games, overall, are designed to allow for human error. Peter Krapp, Professor of Film and Media Studies at the University of California, Irvine, notes that a common human-computer interface (HCI) joke is that “If HCI practitioners were to try game design, the resulting game would have a big red button with the label ‘Press here to win ’” (Nunes 114). Meaning, without the opportunity to mess up, there would be no game. This ability allows people to try many options and fail in a safe environment, but advanced gamers might want to venture past the point of being told what to do by the developers. Glitches provide these people a way to game past the game, often in a more risky and challenging setting where a player could potentially lose all of their saved data and hard work. The thrill is compelling to many who have the means and the will to play the game beyond what was expected by the developers.

Another, perhaps extreme, approach may be to view experiences with glitches as akin to experiences with the uncanny in reality. Eben Holmes, a graduate student at York University, explored this realm in depth. Since gamers submerge themselves into the virtual environment given by the game, they react to the unusual events created by glitches as though they have seen the supernatural in the real world. Thus, players “know these phenomena are generated from perfectly rational (if at times complex) mechanical processes, but at the same time we admit them their destabilizing, supernatural effect” (Holmes 268). Holmes claims that this is precisely why horror games are so effective in riling up people, and the same reason why some glitches with eerie manifestations can recreate the same feeling in gamers. In reflection of the Lacanian views of Slavoj Žižek, Holmes notes that the glitch is an objeta, which is an “object that sets desire in motion” that “functions as ‘an empty surface… a kind of
screen for the projection of desires” (264), suggesting that glitches, in their “empty form,” invite content to give it meaning. For example, many fans attempt to fill out glitch occurrences as canonical to the game’s plot, showing that the meanings gamers “attach to the anonymous presence of objects in games are inscribed with unconscious desire” (264). In this sense, the game’s “reality is not so much stained by the presence of a glitch, but unwound by it” (265). If this is so, games carry psychological connotations and give a rational reason for why some certain players are so inspired to engage so deeply with glitches as to create fan content for software errors—they merely want to fill the empty void given by the presence of the glitch while owning a part of the glitch itself by fabricating it into the canon of the game.

While it is difficult to credit a single psychological explanation for all the players who exploit glitches, gamers feel a connection with these glitches, and the truth is that many do choose to incorporate glitches into their gaming experience.

THE ADVENT OF THE “ASCENDED GLITCH” AND THE RISE OF GLITCH FAN COMMUNITIES

Reactions to glitches are often contained within the context of the game play, but there has been an increase in evidences of the effects of glitches outside that setting. Past underlying psychological reasons, people may choose to expand their reaction beyond the game for a multitude of motives: there is some fame in the gaming community to be gained for knowing about glitches, some find glitches liberating and feel an artistic connection to them, and others simply want to share their individual glitch experiences and explore ones that others describe. These people have created glitch communities. Meanwhile, propelling the growth of these communities and promoting more positive reactions to glitches, were the “ascended glitches”.

When a “positive” glitch attains so much attention that it becomes widely incorporated with popular gaming culture, it is referred to as an “ascended glitch” in forums. One popular example of an ascended glitch is the “MissingNo. Glitch” from Pokémon Red Blue. This glitch resulted from undeleted code from the developers, but allowed unlimited user
duplication of items. Nintendo, upon realizing this glitch, warned customers that it could corrupt user data and graphics (Nintendo). This plan backfired and triggered glitch’s popularity. The glitch became widely documented across gaming magazines, sites, and even printed guides. It hence became included in multiple sociological studies (Bainbridge).

The extent of influence of the “MissingNo. Glitch” on the gaming community cannot be overstated. Fans have produced countless artworks glorifying its existence, ranging from fan art, pillows, to Internet memes, costume play, and fan clubs. Fans readily recognize this glitch character as a part of the Pokémon franchise, even though it was never supposed to be in the games in the first place. Its strong influence on the gaming community is apparent even today; in fact, most of the fan content created about MissingNo. has been generated in recent years (see Figures 8-10). Such ascended glitches are rare, but play a significant role in promoting a general appreciation for glitches and expanding glitch communities.

With the growth of glitch content available online, fan communities have also sprouted from the gaming population. One such glitch community is GamerGlitch.com, which documents countless glitches and allows members to both contribute and comment on the glitches that are submitted into its database (GamerGlitch.com). There are also many individual threads in gaming forums dedicated to glitch hunting. Most who visit these communities are curious gamers who are only casually involved with glitches, without investing time and effort to personally discover new ones. However, the people who take the hunt to the next level, who search for glitches and actively post content online, drive these glitch communities.

Informal glitch communities have formed all over the Internet, even outside glitch-oriented domains, including blogs, forums, and YouTube. One informal glitch
explorer is YouTube user “glisignoli,” whose game glitch videos have an average of about 90,000 views. These informal glitch documentations have been effective so far, and more gamers have been able to deliberately trigger previously discovered glitches by following the directions posted online. In this way, there is almost a hierarchical system in the glitch community, because those who discover the glitches first will be highly recognized. People who regularly contribute quality information on glitches can gain a level of Internet fame.

Of course, there are less charitable contributors to these glitch communities, including those who like to “troll” other members. One product of these “trolls” is fake glitches. Usually meant to amuse the enlightened by tricking naïve players into attempting to execute them, fake glitches are essentially elaborate glitches that do not actually exist. Many times, they demand difficult tasks, contributing to the fun factor for pranksters when they see people struggle to follow the instructions to trigger the glitch. For instance, a fake glitch might require completing a specific task 100 times or beating an entire game without losing once in order to acquire a rare party member or view a secret ending. Naturally, gamers can become frustrated with glitch communities if they fall for one of these pranks. It usually takes experience to distinguish real from fake glitches, but this sort of behavior has helped to indirectly create a system of credibility and trust in the communities as well. A contributor with a history of real content is likely to be trusted more and thus can gain a loyal following.

Other contents contributed to glitch communities include costumes of glitch characters, Internet memes, fan art, and fan fiction. With the Internet, there has been a proliferation of glitch appreciation, which has added to the richness of glitch communities that have traditionally been limited to blogs with procedural documentation of glitches. Thanks to this expansion of glitch culture, glitches have begun to be viewed in a more positive light.

GLITCH ARTISTRY

Some people go even past the mindset of the typical gamer to simply enjoy the glitches for what they are. They find glitches liberating. Though comprised of a minor number of people, these glitch appreciators are often artists who see the aesthetic beauty of glitches, with some claiming that they are a way to break out and pursue freedom from the controls of the medium. This particular subculture finds that the “negative feeling

2 A “troll” on the Internet is a prankster whose actions are intended to enrage other people for humor.
[from an experience with a glitch] makes place for an intimate, personal experience of a machine (or program), a system showing its formations, inner workings, and flaws” (Menkman). In being able to work intimately with the program, the gamer can begin to appreciate all the intricacies within, including the faults. The gamer artist, who finds glitches beautiful, can see value in glitch occurrences in the same way people perceive beauty and self-expression in everyday events. Johnny Rogers, a glitch artist, noted, “It’s really refreshing to watch our human-centric hand vanish while the digital pulls backs into the beautiful, beautiful landscape” (Moradi). As a result, glitches can become artistically liberating experiences.

This mindset has birthed glitch art, which is an unconventional, modern art style that involves capturing the attraction of glitch occurrences. For instance, “Notes of Mazy” 056.001 is a digitally produced glitch artwork made from a video of a child. Though her form is barely discernible, a profile of her face is visible in the pixilated mess, yielding an alluring surrealism to the piece (See Figure 11). Suzanne Labarre,

Figure 11: “Notes on Mazy” 056.001 by Norbert Pfaffenbichler from Glitch: Designing Imperfection.

a senior editor at Fast Company’s Co.Design, notes in her telling article, “Glitches Turn Video Games into Sublime Art” that though this art form is not yet mainstream, it has gained some popularity. In fact, this phenomenon has resulted in a glitch art symposium, a 206-page glitch art book called Glitch: Designing Imperfection,
and glitch theorists who ponder the aesthetic values of glitches. Labarre says that “You could read all sorts of meaning into these—they’re a political statement about finding beauty in crossing boundaries; they’re questioning the notion of artistic authorship; and so on…” At the very least, glitch art shows that glitches may not be so horrible after all if people can convert these errors into beautiful artworks.

In artistic communities such as Vimeo, people have been experimenting with glitch in multimedia forms. For instance, Hayes is an artist who forces glitches in fighting games such as Street Fighter and captures the colorful, glitch-ridden fight scenes in video. His usual works involve stop animation and film works, but his glitch series diverts from the norm. His videos are in some ways more mystical than still art, because the audience is able to watch these bizarre malformations of shapes morph and interact.

Emerging even prior to glitch design, glitch music is a genre that exploits technologic sounds or quick clicks and cuts from the normal track. A track can be edited together synthetically using glitch-like sounds, by deforming the actual hardware, or forcing glitches to occur in an audio editing software. The genre started gaining momentum in the ‘90s, with forerunners including Oval, Pole, and Vladislav Delay (“Explore Music: Glitch”). This unlikely type of music has since then become integrated with other genres, sweeping the modern electronic music scene with popular mixed-genre glitch artists such as The Glitch Mob (Nijjar) and Dntel (Hage).

Even though less known than that of other art forms, the world of glitch art is vast. Just through a cursory search, one can discover a wealth of creative creations made by people with an appreciation for the aesthetic qualities of glitches. They see the glitch as a means of escaping traditional media, just as the gamer can see the glitch as a way to escape the limits of the game.

OFF WITHOUT A GLITCH

The impact of glitches on the gaming culture, as well as the artistic subculture, makes it difficult to tag them as truly negative. In fact, they can be beneficial; by
helping to break down the barriers around the virtual world, glitches allow players to transcend the game and play outside of the intended medium. Glitches have become an indispensable aspect of the gaming culture, giving positive experiences to more and more gamers every day. Even in the real world, the influence that glitches have can be seen in the subcultures formed by fan communities and artists who derive value or beauty in corrupt data through creative means. In their own way, glitches reinforce optimism and give freedom of expression to gamers who wish to engage with games on a deeper level. Furthermore, since glitches are not going away any time soon, the developers should embrace their mistakes and pocket the change. They could realistically shift the criteria for which glitches should be reported and fixed in order to reduce cost and increase focus on developing actual content.

The gods of video game development should allow the gamers to play with the fire they were given, while gamers should accept both the benefits and dangers of the gift of freedom. Since glitches are merely side effects of allowing players a sense of freedom, developers should not have to slave to protect the players from them. Let the gamers act as bold explorers and scope out glitches like treasures. Let them play the glitches to their heart’s content.

WORKS CITED

Nunes, Mark. Error: Glitch, Noise, and Jam In New Media Cultures. New York: Continuum, 2011

Roh, Tina. “Game Glitch Experiences.” E-mail Survey. 19 Apr. 2011.

IMAGE SOURCES

Figure 5: Hind, C., and D. Bell. “Setting the Bar: Establishing Bug Criteria to save Time, Money, and Sanity.” *Game Developer* 2007.

Figure 8c: Photo of a MissingNo. cosplayer, *Fanime 2011*, San Jose Convention Center, CA. Personal photograph by author. 2011.

29