Quantitative Microbial Risk Assessment for Estimating Setback Distance from Aerial Irrigation of Dairy Manure

Tucker Burch, Mark Borchardt, Susan Spencer
USDA – Agricultural Research Service
Joel Stokdyk and Aaron Firnstahl
US Geological Survey Wisconsin Water Science Center
Becky Larson, Dept Biological Systems Engineering UW-Madison
Burney Kieke, Marshfield Clinic Research Foundation
Ana Rule, Bloomberg School of Public Health, Johns Hopkins University

Definitions

Risk: cases of illness/people exposed
– Can also be interpreted as probability

Example:
10 people exposed
2 cases of illness (red)
Risk = 2/10
Probability = 0.2 (or 20%)

Definitions

QMRA: quantitative microbial risk assessment
– Predicts risk using mathematical models
– Prediction is based on average pathogen dose

Alternative is epidemiology
– Measures risk directly
– Expensive $$

The archived presentation is available at:
http://articles.extension.org/pages/21819/chronological-webcast-archive
Project Objectives

1. Identify the risk of illness from airborne pathogens during manure irrigation.
 - Acute gastrointestinal illness (AGI)
 - Relate to distance

2. Identify other variables (e.g., weather conditions) most important for airborne pathogen transport during manure irrigation
Livestock and Poultry Environmental Learning Center Webinar Series

June 15, 2018

The archived presentation is available at:
http://articles.extension.org/pages/21819/chronological-webcast-archive

Research Approach

Field Data → Modeling → Risk Assessment

- 25 field trials
 - 15 traveling gun, 8 center pivot, 2 tanker
- Measured microbe concentrations in manure and at multiple distances for each trial
 - qPCR and culture
- Collected weather data for each trial

Measurements during Irrigation Trials

- Portable Weather Station
 - wind direction and speed
 - air temperature
 - solar radiation
 - relative humidity
 - precipitation (always = 0)

- Microbes and Pathogens
 - qPCR
 - conventional culture

Typical field sampler configuration

- Wind direction
- 500 Ft. gun tow path distance
- 400 Ft
- 200 Ft wide spray path
- 100 Ft
- 250 Ft
- 400 Ft
- 500 Ft
- 650 Ft
- 0 Ft
- Upwind control

Note: Paired samplers were located 50 Ft apart.

Weather Conditions during Manure Irrigation Trials

<table>
<thead>
<tr>
<th>Mean temperature (°F)</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean relative humidity (%)</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>Mean wind speed (MPH)</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Max wind speed (MPH)</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Mean solar irradiance (W/m²)</td>
<td>0</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>800</td>
</tr>
</tbody>
</table>

Gram-Negative Bacteria in Air During Travelling Gun Manure Irrigation

May 22, 2014; 11 mph wind; 530 W/m² solar irradiance; 50% relative humidity; 68 °F temp

Notes:
- MacConkey agar in Anderson samplers
- Air sample volume was 540 liters
- Downwind distances were perpendicular to gun movement
- Manure diluted 1:100 before plating 100 µl

The archived presentation is available at:
http://articles.extension.org/pages/21819/chronological-webcast-archive
Research Approach

Field Data → Modeling → Risk Assessment

• Statistical modeling (i.e., regression)
 • 2 objectives:
 – Predict air concentrations for risk assessment
 – Relate air concentrations to weather conditions and microbe concentrations in manure

Research Approach

Field Data → Modeling → Risk Assessment

• Statistically most important variables:
 – Distance from irrigated manure
 – Wind speed
 – Pathogen concentrations in manure

Research Approach

Field Data → Modeling → Risk Assessment

• Quantitative microbial risk assessment
 • Average dose calculated from: pathogen prevalence, distance, age, inhalation rate, time spent outdoors
 • 2 pathogen surrogates: bovine Bacteroides and gram negative bacteria

The archived presentation is available at:
http://articles.extension.org/pages/21819/chronological-webcast-archive
The archived presentation is available at:
http://articles.extension.org/pages/21819/chronological-webcast-archive
Acknowledgements

• We thank ...
• Jan Altmann, Jordan Gonnering, Hana Millen and Zach Zopp for field and laboratory work
• John Panuska for contributions to the study design
• Scott Fischer and owners and staff of participating dairy farms
• Philip Schmidt, Peter Teunis, and Norval Strachan for dose-response parameter distributions
• This study was funded in part by the Wisconsin Department of Natural Resources