Expressing Medical Image Measurements using the Ontology for Biomedical Investigations

Heiner Oberkampf1,2, James A. Overton3 Sonja Zillner1, Bernhard Bauer2 and Matthias Hammon4

1 Siemens AG, Corporate Technology
2 University of Augsburg, Software Methodologies for Distributed Systems
3 Knocean
4 University Hospital Erlangen, Department of Radiology
Agenda

1. Measurements in radiology and pathology
2. Expressing measurements using OBI
 1. OBI value specifications
 2. Size measurements
 3. Density measurements
 4. Ratio measurements
3. Normal size, density and ratio specifications
4. Applications
 1. Information Extraction
 2. Normality Classification
 3. Inference of Change
5. Demo
Typical Measurements in Radiology

Not comprehensive

Size
- length (1D, 2D, 3D), area, volume
- index (e.g. spleen index = width*height*depth)

Density measured in Hounsfield scale (Hu):
- mainly in CT images
- minimal, maximal and mean density values for Regions of Interest (ROIs)

Angle
- e.g. bone configurations or fractions

Blood flow
- e.g. PET: myocardial blood flow and blood flow in brain

...
Measurements in Pathology

Not comprehensive

Size
length (1D, 2D, 3D), area

Weight
weight of resected tissue, nodule or tumor

Ratios
immunohistochemical staining of tumor cells

Other measurements
viscosity of blood, serum, and plasma
mitotic rate
serum concentration
...

Expressing Measurements using OBI
obi:value specification

Shared structure in different contexts

The element "1.8cm" can occur in many different parts of a biomedical investigation. It might be part of:

- the data resulting from a measurement of one of John's lymph nodes, made on January 12, 2014 in Berlin
- a protocol, i.e. a specification of a plan to make some measurement
- a prediction of the result a measurement planned for the future
- a rule for classifying measurements
- many more...

OBI uses the "value specification" approach to capture the shared structure across different uses and allow for easy comparison between them.
Definition and relations

Definition: An information content entity that specifies a value within a classification scheme or on a quantitative scale.

Example of usage: The value of 'positive' in a classification scheme of "positive or negative"; the value of '20g' on the quantitative scale of mass.

A scalar value specification has a numeric value and a unit of measurement. We connect them together with these relations:

- **obi:has value specification:** connect some particular measurement datum, prediction, etc. to a value specification
- **iao:has measurement unit label:** determine the unit of measurement for the value specification
- **obi:has specified value:** determine the numeric value for the value specification
Ontologies

Besides OBI the following ontologies are used to express measurements.

OBO Library
Basic Formal Ontology (BFO)
Relations Ontology (RO)
Information Artifact Ontology (IAO)
Ontology for General Medical Science (OGMS)
Units Ontology (UO)
Phenotypic quality (PATO)
Biological Spatial Ontology (BSPO)

Other
Radiological Lexicon (RadLex)
Model of Clinical Information (MCI)
Example: Enlarged lymph node with diameter 1.8 cm.
Length measurements

Example: Transverse diameter of kidney 5.2 cm.

Note: Instances with underscore represent blank nodes
2D Measurements

Example with RECIST

RECIST
(Response Evaluation Criteria In Solid Tumors)

“First you need to identify the longest [in plane] diameter of a lymph node or nodal mass (here 56.0mm) and then choose the longest perpendicular diameter to that as the short axis (here 45.3mm).”

2D Measurements

Example: Lymph node with diameter 56.0 x 45.3 mm.

Example:

Lymph node with diameter 56.0 x 45.3 mm.

radlex:lymph node

_:longest-diam

_mci:longest
diameter

_:md

_:md2

bspo:orthogonal_to

_i:tp

bspo:transverse plane

bspo:axis

within plane

u:o:length unit

"5.6"^^xsd:float

"4.53"^^xsd:float
Volume Measurements

Example: Volume of spleen 201.136 cm³.

Segmentation algorithms used to determine the volume of organs.

Density Measurements

Density is measured in Hounsfield unit (HU)

Density measurements given for a region of interest (ROI)

Minimal, maximal and mean values for the pixels of the ROI

Examples:
“Density of a liver cyst 8 HU”
Density Measurement

Representation with obi:mean calculation
Ratio Measurements

Percentage of Ki-67 positive tumor cells
Ki-67 is a protein in cells that increases as they prepare to divide into new cells. A staining process can measure the percentage of tumor cells that are positive for Ki-67. The more positive cells there are, the more quickly they are dividing and forming new cells. In breast cancer, a result of less than 10% is considered low, 10-20% is intermediate/borderline, and more than 20% is considered high.
Representation of Ratio Measurements

Example: 10 % of Ki-67 positive tumor cells
Representation of Ratio Measurements

Example: 10% of Ki-67 positive tumor cells

Numerator and denominator should be explicit and could be represented as ‘iao:measurement data item’ or ‘iao:scalar measurement datum’ or stato:count similar to the definition in STATO. This has the advantage that dimensional and dimensionless ratios can be represented in the same form.
Normal Specifications
Normal Upper Bound Specification

Example: Lymph nodes are normally up to 1 cm.
Normal Interval Specification

Example: Normal diameter of the pulmonary atery is between 1.6 and 2.6 cm.
Normal Interval Specification

Example: Normal length of kidney along craniocaudal axis: 8.0 – 13.0 cm.
Normal Interval Specification

Example: Normal mass density of the spleen in Hounsfield scale: 40-50 HU.
Expressing a Reference Population

Use punning of PATO qualities

Populations, defined by certain qualities (e.g., age or gender) are represented by punning the respective PATO qualities.
Link Normal Specifications to Reference Population

Link to Normal Specifications
Normal Ratios

Example: Normal levels of creatinine in the blood are 0.6-1.2 mg/dL in adult males.
Applications
Representing Context Information

Links to examinations, images and reports.

- mci:examination
- mci:image series
- iao:image
- obo:has_specified_output
- ro:has_part
- mci:has slice ID
- bs:has_part
- mci:documented in
- iao:is about
- "53"^^xsd:integer
- radlex:lesion
- ogms:clinical finding
- mci:size finding
- ro:has_part
- mci:documented in
- :s
- :ima53
- :rr
- :exm1
- :img-series1
- :reports on
- :cf0
- iao:is about
- lesionXY
Knowledge Model with Size Specifications

Manually created with radiologist.

Content:
- 50 size specifications about 38 different RadLex concepts:
 - e.g. spleen, kidney, gallbladder, pancreas, lymph nodes, aorta, lesion, cyst, bile ducts etc.
- Some of them are patient-specific.

Sources:
- A book about normal findings¹
- Radiopedia²

Data Sets:
- **Lymphoma patients**: 2584 German radiology reports (27 different readers) of 377 patients
 Imaging modality: CT, MRI, US
- **Internistic patients**: 6007 German radiology reports (27 different readers)
 Imaging modality: CT

² http://radiopaedia.org/
Application 1: Information Extraction

Using normal size specification to extract size findings from text.

Example: “Enlarged lymph node right paraaortal below the renal pedicle now 23 mm.”

Annotations:

radlex:enlarged radlex:lymphadenopathy radlex:lymph node radlex:right radlex:paraaortic
radlex:lateral aortic lymph node radlex:inferior radlex:inferior para-aortic lymph node
radlex:kidney radlex:renal pedicle

2.3 uo:centimeter

Measurement relation resolution:
1. Knowledge based:
 1. Filter annotations
 2. Create spanning tree along RadLex subclass hierarchy
 3. attach available size specifications
 4. compare size specifications with measurement
 5. compute ranking value including the concept position in Radlex
2. Sentence distance
3. Statistics (based on 1000 manually annotated sentences)
 Final ranking integrates results from all three approaches

Result: 2.3 cm describes the size of the inferior para-aortic lymph node.
Evaluation of pure Knowledge based Approach

F-measure results:
lymphoma dataset: 0.85
internistic dataset: 0.79

Application 2: Normality Classification

Patient-specific classification of normal and abnormal size findings.

Example: 52 years old patient

Given a size finding: 1D, 2D or 3D with corresponding anatomical entity.

- mediastinal lymph node: 1.6 x 1.2 cm
- inguinal lymph node: 1.4 cm
- spleen: 10 x 4.8 cm
- head of pancreas: 2.8 cm

Retrieve all patient-specific normal size specifications for closest superclass:

- mediastinal lymph node: normal diameter of lymph node up to 1 cm
- inguinal lymph node: normal diameter of inguinal lymph node up to 1.5 cm
- spleen: normal spleen: depth 4-6 cm, width 7-10 cm, length 11-15 cm
- head of pancreas: normal size of head of pancreas (for patients from 51-60 years): 21-27 mm

Check whether the values are within normal interval

- abnormal: mediastinal lymph node 1.6 x 1.2 cm
- normal: inguinal lymph node 1.4 cm
- normal: spleen 10 x 4.8 cm
- abnormal: head of pancreas 2.8 cm
Application 3: Inference of Change

We use SPARQL to classify size findings as progressive, regressive or stable.

- Scalar measurements can be compared directly.
- For two/three directional length measurements we compare the index (e.g. spleen index: width x depth x length).

Image source: "Automated Detection and Volumetric Segmentation of the Spleen in CT Scans" M. Hammon, P. Dankerl, M. Kramer, S. Seifert, A. Tsymbal2, M. J. Costa2, R. Janka1, M. Uder1, A. Cavallaro
Work-in-Progress: Linking Findings

Linking findings from consecutive examinations based on anatomical entity.

Problems: Two findings about “radlex:lymph node” do not necessarily describe the same lymph node.

For the current demo we linked and compared only measurements occurring within one report sentence.
Demo
Architecture of Demo Implementation

- **Triple store: Apache Jena Fuseki**
 - /mci
 - BFO, IAO, OGMS, MCI, BSPO, OBI, UO, PATO
 - /radlex
 - /pdata
 - named graphs for different examinations

- **Jetty Server**
 - Using Java, Apache Jena, XSLT
 - SPARQL queries
 - SPARQL queries
 - XML response

- **Browser**
 - HTTP request
 - HTML response

- **RadiologyReports**
 - FindingsSection
 - AssessmentSection
 - Meta data

- **parsing of annotations**
 - UIMA
2006-05-31 computed tomography
Hals-, Thorax- und Abdomen-CT mit KM i.v

<table>
<thead>
<tr>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cm</td>
<td>lymph node Weiterhin mehrere, deutlich unter 1 cm messende Lymphknoten entlang der Halsgefäβnervenscheiden bds.</td>
</tr>
<tr>
<td>1 cm</td>
<td>axillary lymph node Rechts axillär grüßenregenerter Lymphknoten jetzt 1 cm (IMA 9), vormals 1,3 cm.</td>
</tr>
<tr>
<td>1 cm</td>
<td>axillary lymph node Bei Z.n. B-NHL residualer, kleiner 1 cm großer Lymphknoten rechts axillär.</td>
</tr>
</tbody>
</table>

2006-02-28 computed tomography
Hals-, Thorax- und Abdomen-CT mit KM i.v

<table>
<thead>
<tr>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mm</td>
<td>submental lymph node Die vorbeschriebenen zervikalen Lymphknoten entlang der Halsgefäβnervenscheide bds. sowie submandibulär, submental und in den Kieferwinkeln sind in Größe und Anzahl deutlich regredient (aktuell noch Durchmesser bis 8 mm IMA 39 li unterhalb des M. sternocleidomastoideus).</td>
</tr>
<tr>
<td>1,4 cm</td>
<td>axillary lymph node Deutlicher Größenrückgang auch der axillären Lymphknoten, zuvor bis 3,5 cm durchmessende Lymphknotenpakete rechts axillär durchmessen aktuell noch maximal 1,4 cm.</td>
</tr>
<tr>
<td>5 mm</td>
<td>subpleural im Mittellappen rechts (IMA 35, Durchmesser 5 mm).</td>
</tr>
<tr>
<td>5 mm</td>
<td>round mass Im apikalen Unterlappen links zahlreiche Rundherde (IMA 20 bis 31, Durchmesser bis 6 mm), im rechten Unterlappen (IMA 34, Durchmesser 5 mm), im basalen Mittellappen (IMA 47, Durchmesser 5 mm) und in den Oberlappen bds. (jeweils IMA 12, Durchmesser 4 bzw. 5 mm).</td>
</tr>
<tr>
<td>5 mm</td>
<td>round mass</td>
</tr>
<tr>
<td>6 mm</td>
<td>round mass</td>
</tr>
<tr>
<td>1,2 cm</td>
<td>lesion Größenumveränderte, flau hypodense, subkapsulär im Segment 5 gelegene Leberläsion (IMA 66/67, Durchmesser 1,2 cm) mit randständig fraglich diskreter stäbchenförmiger KM-Mehrannaherkung.</td>
</tr>
<tr>
<td>7 mm</td>
<td>lesion Eine weitere flau hypodense, 7 mm durchmessende Läsion im Segment 5 (IMA 65), die in der VA nicht sicher nachvollziehbar ist.</td>
</tr>
<tr>
<td>8,2 x 9,1 x 13 cm</td>
<td>spleen Milz homogen, ausgeprägter Größenrückgang bei vorbestehender Splenomegalie (aktueller Durchmesser 8,2 x 9,1 x 13 cm).</td>
</tr>
<tr>
<td>10,5 cm</td>
<td>Cranio-caudaler Durchmesser bds. 10,5 cm, im Vergleich zur VU hierbei rückschlägige Schwellung des Nierenparenchyms bei verbesserter Abgrenzbarkeit zum umgebenden Fettgewebe.</td>
</tr>
<tr>
<td>8 mm</td>
<td>Bei liegenden Hamleiterschienen bds. mehrere kalkdichte Konkremente innerhalb des Nierenbeckenkoelchsystems mit Durchmessern, bds. bis zu 7 bis 8 mm.</td>
</tr>
</tbody>
</table>
Patient TP32

Date of birth: 1955-01-01

- **anatomy**
- **measurements**
- **changes**

Examinations

<table>
<thead>
<tr>
<th>Date</th>
<th>Procedure</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-01-10</td>
<td>computed tomography Testuntersuchung</td>
<td></td>
</tr>
</tbody>
</table>
| 2.8 cm head of pancreas | Durchmesser des Pankreaskopf 2.8 cm.
| | Pankreas leicht vergrößert |
| 2003-08-18 | computed tomography Testuntersuchung|
| 2.9 cm head of pancreas | Durchmesser des Pankreaskopf 2.9 cm.
| | Keine Auffälligkeiten |
Questions?

Contact:

Heiner Oberkampf
Siemens AG, Corporate Technology
Munich, Germany
heiner.oberkampf.ext@siemens.com

James A. Overton
Knocean
Toronto, Canada
james@overton.ca

Thanks:
OBI developers