Route Planning for Terrain Relative Navigation

Steven Krukowski
May 5th, 2015
Aerospace Robotics Lab (ARL)
Advisor: Prof. Steve Rock
Motivation

- Missions with Limited Navigation
 - TERCOM
 - Planetary Exploration
 - Indoor Navigation
 - Underwater Robotics

- Specific Application
 - Underwater Return-to-Site Mission
 - Plan route to arrive accurately on-site

[Image of TERCOM]

Monterey Bay Aquarium Research Institute (MBARI)

[Image of NASA Mars Rover]

http://upload.wikimedia.org/wikipedia/commons/d/d8/NASA_Mars_Rover.jpg
Underwater Navigation

- **Terrain Relative Navigation**
 - No GPS
 - Non-georeferenced maps
 - Correlate sonar range measurements to Digital Elevation Map

- Successfully demonstrated Return-to-Site Mission

TRN Return-to-Site Demonstration at Portuguese Ledge

![TRN Return-to-Site Path](image)

- **TRN Vehicle Path**
- **Target Site**
TRN Route Planning

Suggested Routes on Portuguese Ledge Map

Flat Terrain = Low Information

Path Dependent Navigational Accuracy

Varying Terrain = High Information
Route Planning with Uncertainty

Portuguese Ledge Demonstration

- TRN Vehicle Path
- Vehicle did not fly over planned path due to uncertain position estimate
- TRN Estimate remains inaccurate over flat terrain (low information)
- TRN Estimate improves over varying terrain (high information)
Route Planning Problem

- **Objective:**
 - Maximize probability of arriving at goal
 - Minimize distance traveled

- **Using:**
 - Commanded vehicle position

- **Issue:**
 - Vehicle path and position estimate dependence
Research Goal

- **Goal:**
 - Develop offline route planner to generate optimal commanded path
 - Incorporating path/estimate coupling

![Diagram of Offline Route Generator](image)
Method of Approach

Partially Observable Markov Decision Process (POMDP)

Advantages:
- Couples path and estimate
- Established solvers
- Successful in Airborne Collision Avoidance
 - Prof. Kochenderfer

Disadvantages
- Difficult to solve/scale
- Requires simplifications
- Onboard computation

- **Implementation**
 - Plant
 - POMDP Solver
 - Optimal Policy
 - Offline
 - Online
 - Dyn. Model
 - Obs. Model
 - Reward
 - Time Horizon

- **POMDP Policy**
 - control
 - probability
Method of Approach

Two-Step Process

1. Offline POMDP Solver
 - Dyn. Model
 - Obs. Model
 - Reward
 - Time Horizon
 - POMDP Solver
 - Optimal Policy

2. Offline Simulation
 - Model
 - POMDP Policy
 - Optimal Route
 - Existing Vehicle Control Structure

POMDP Solution with Practical Implementation
Model Simulation Results

Model Contour with Results

Start

Goal

Planned Path

End Positions

North

East

9
Conclusions

- Demonstrated feasibility of two-step approach using POMDPs

Continuing Work

- Refine route extraction with offline simulation
- Quantify route success probability and optimality
- Scale using waypoints
 - Faster POMDP solution
 - Loss of global optimality
 - Implementable on vehicle