Aeroelastic Analysis of Highly Flexible Flapping Wings Using an ALE Formulation of Embedded Boundary Method for Turbulent Fluid-Structure Interaction Problems

Vinod K. Lakshminarayan1
Charbel Farhat2

Department of Aeronautics and Astronautics
Stanford University, CA 94035

April 29, 2014

1Postdoctoral Research Fellow
2Vivian Church Hoff Professor of Aircraft Structures
Micro Air Vehicles (MAVs) as defined by DARPA

- Dimension ≤ 6 inches
- Weight ≤ 100g
- Endurance ≥ 1 hour
Micro Air Vehicles (MAVs) as defined by DARPA:
- Dimension ≤ 6 inches
- Weight ≤ 100g
- Endurance ≥ 1 hour

MAV Applications:
- Reconnaissance
- Surveillance of hazardous places
- Aerial photography etc.

“Over the hill” Reconnaissance

Operations in Dangerous Environments
Micro Air Vehicles (MAVs) as defined by DARPA

- Dimension ≤ 6 inches
- Weight ≤ 100g
- Endurance ≥ 1 hour

MAV Applications:

- Reconnaissance
- Surveillance of hazardous places
- Aerial photography etc.

MAV Requirements:

- Efficient
- Highly maneuverable
- Insensitive to gust
- Hover capable
Micro Air Vehicles

Three types of MAVs

- **Fixed Wing**
 - Simple, fast, and efficient
 - No hover capability
 - Only for outdoor missions

- **Rotary Wing**
 - Hover capable
 - Poor efficiency
 - Low endurance
 - Sensitive to wind gusts

- **Flapping Wing**
 - Bio-inspired
 - Potential solution
 - Hover capable, maneuverable, insensitive to gusts
 - Limited understanding
Micro Air Vehicles

Three types of MAVs

- **Fixed Wing**
 - Simple fast and efficient
 - No hover capability → Only outdoor missions

- **Rotary Wing**
 - Hover capable
 - Poor efficiency
 - Low endurance
 - Sensitive to wind gusts

- **Flapping Wing**
 - Bio-inspired
 - Potential solution
 - Hover capable, maneuverable, insensitive to gusts
 - Limited understanding

[Lakshminarayan and Farhat 2014 Affiliates Meeting April 29, 2014]
Micro Air Vehicles

Three types of MAVs

- **Fixed Wing**
 - Simple fast and efficient
 - No hover capability → Only outdoor missions

- **Rotary Wing**
 - Hover capable
 - Poor efficiency → Low endurance
 - Sensitive to wind gusts
Micro Air Vehicles

Three types of MAVs

- **Fixed Wing**
 - Simple fast and efficient
 - No hover capability → Only outdoor missions

- **Rotary Wing**
 - Hover capable
 - Poor efficiency → Low endurance
 - Sensitive to wind gusts

- **Flapping Wing**
 - Bio-inspired → Potential solution
 - Hover capable, Manueverable, Insensitive to gust
 - Limited understanding
Two different forms of flapping in nature

- **Avian Flapping**
 - Flaps in vertical plane
 - Small pitch angle
 - Needs forward velocity

- **Insect Flapping**
 - Flaps in nearly horizontal plane
 - Large changes to wing pitch
 - Hovering flight → Suitable for hover-capable MAVs
Two different forms of flapping in nature

- **Avian Flapping**
 - Flaps in vertical plane
 - Small pitch angle
 - Needs forward velocity

- **Insect Flapping**
 - Flaps in nearly horizontal plane
 - Large changes to wing pitch
 - Hovering flight → Suitable for hover-capable MAVs

Common Feature:

- Wing flexibility
 - Avian wings → Moderately flexible
 - Insect wings → Extremely flexible
Challenges in building flapping-wing MAVs:

- Difficult to mimic kinematics of nature
- Thin, highly flexible wings undergoing large deformations
 - Complex non-linear aeroelastic problem
 - Wide design space involving aerodynamic, kinematic and structural variables
- Time consuming experimental studies
Challenges in building flapping-wing MAVs:
- Difficult to mimic kinematics of nature
- Thin, highly flexible wings undergoing large deformations
 - Complex non-linear aeroelastic problem
 - Wide design space involving aerodynamic, kinematic and structural variables
- Time consuming experimental studies

Solution:
- Computational studies
 - Explore large design space
 - Understand flow features hard to measure with experiments
Past Computational Studies

2D CFD analysis
Tuncer et al. (1999), Young et al. (2007)

3D rigid wing or prescribed motion CFD analysis

FSI simulation using low-order aerodynamic analysis
Liani et al. (2007), Kim et al. (2008), Gopulapati et al. (2013)

Analysis with linear structural model
Gopalakrishnan and Tafti (2010)
Past Computational Studies

2D CFD analysis
Tuncer et al. (1999), Young et al. (2007)

3D rigid wing or prescribed motion CFD analysis

FSI simulation using low-order aerodynamic analysis
Liani et al. (2007), Kim et al. (2008), Gopulapati et al. (2013)

Analysis with linear structural model
Gopalakrishnan and Tafti (2010)

Coupled CFD-CSD aeroelastic analysis
Chimarkurthi et al. (2009), Masarati et al. (2011), Malhan et al. (2012)
Past Computational Studies

2D CFD analysis
Tuncer et al. (1999), Young et al. (2007)

3D rigid wing or prescribed motion CFD analysis

FSI simulation using low-order aerodynamic analysis
Liani et al. (2007), Kim et al. (2008), Gopulapati et al. (2013)

Analysis with linear structural model
Gopalakrishnan and Tafti (2010)

Coupled CFD-CSD aeroelastic analysis
Chimarkurthi et al. (2009), Masarati et al. (2011), Malhan et al. (2012)
⇒ Difficulty simulating highly flexible wing → Uses Arbitrary Lagrangian Eulerian (ALE) framework
Arbitrary Lagrangian-Eulerian (ALE)

- Popular method for solving FSI problems
- Body-fitted mesh
 - Precisely tracks the structure
 - Free to move arbitrarily inside computational domain

Advantage:
- Relatively simple treatment of material interfaces

Disadvantage:
- Lacks robustness with respect to large deformations
- More sensitive in stretched viscous grids

Lakshminarayan and Farhat
2014 Affiliates Meeting
April 29, 2014 7 / 21
Arbitrary Lagrangian-Eulerian (ALE)

- Popular method for solving FSI problems
- Body-fitted mesh
 - Precisely tracks the structure
 - Free to move arbitrarily inside computational domain

Advantage:
- Relatively simple treatment of material interfaces
Arbitrary Lagrangian-Eulerian (ALE)

- Popular method for solving FSI problems
- Body-fitted mesh
 - Precisely tracks the structure
 - Free to move arbitrarily inside computational domain

Advantage:
- Relatively simple treatment of material interfaces

Disadvantage:
- Lacks robustness with respect to large deformations
 - More sensitive in stretched viscous grids
Also known as Immersed boundary, Ghost fluid, Fictitious domain methods
Embedded Boundary Methods

- Also known as Immersed boundary, Ghost fluid, Fictitious domain methods
Embedded Boundary Methods

- Also known as Immersed boundary, Ghost fluid, Fictitious domain methods
Embedded Boundary Methods

- Also known as Immersed boundary, Ghost fluid, Fictitious domain methods

Eulerian grid Ω_h

- real node
- ghost node
Advantages:

- Robust to handle any arbitrarily large deformation
Resolve flow features near structure
Viscous flows \rightarrow boundary layer
One solution → refine large portion of grid
One solution → refine large portion of grid

- Very expensive
- Structural deformation \rightarrow **Rigid** + **Deformational** part
- Fluid mesh tracks the rigid component
- Structural deformation \rightarrow **Rigid** + **Deformational** part
- Fluid mesh tracks the rigid component
Objectives

- Main objective is to perform high fidelity non-linear aeroelastic analysis of extremely flexible flapping wings using the ALE-embedded method

- Detailed validation of the simulation with available experimental data
AERO Suite of Codes

AeroF:
- Three-dimensional, unstructured, compressible, multi-phase, finite volume based Navier-Stokes solver
- Second- and higher-order spatial discretization
- Convective fluxes based on the Roe, HLLE, or HLLC schemes
- Galerkin centered approximation method for the viscous fluxes
- Second- or higher-order time discretization with DGCLs
- FIVER embedded boundary method
 - On solution of exact, one-dimensional Riemann problems

AeroS:
- Parallel linear, nonlinear, comprehensive, solid and structural dynamics finite element code
- Can interact with AeroF for coupled fluid-structure problems

Peripheral Modules: Sower, Matcher
Experiments of Wu et al.

- Capran film supported by carbon fiber based spar-batten skeleton
- Different wings tested → named LiBj
 - i → number of composite layers on leading edge
 - j → number of composite layers on battens
 - Root has two composite layers

Figure: Flapping wing planform, Wu et al.
AIAA-2009-2413
Flapping Wing Setup

- Experiments of Wu et al.
- Capran film supported by carbon fiber based spar-batten skeleton
- Different wings tested → named LiBj
 - $i \rightarrow$ number of composite layers on leading edge
 - $j \rightarrow$ number of composite layers on battens
 - Root has two composite layers

Figure: Flapping wing planform, Wu et al. AIAA-2009-2413

Flapping Motion

- 35° flap angle
- Flapping frequency varies from 5Hz to 40Hz
- Max tip velocity ≈ 11 m/s ($\text{Mach} \approx 0.03$)
- Max tip Reynolds number $\approx 10,000$
 - Based on root chord
Finite Element Model

- High-fidelity, nonlinear, multi-body dynamics model
- Rigid and flexible shell elements
- Roughly 13,000 degrees of freedom.

Fluid Mesh

- 1.4 million nodes
- 8.5 million tetrahedral elements
Three different wings simulated

- Flexibility \rightarrow L1B1 > L2B1 > L3B1
Comparison with Experiment - Tip Deflection

At 25Hz flapping frequency

Figure: L1B1 wing
Red curve shows tip deflection of rigid wing

Figure: L2B1 wing

Figure: L3B1 wing

Qualitative trends very well predicted
All three wings show lagged response
▶ Larger flexibility → More lag
Comparison with Experiment - Tip Deflection

At 25Hz flapping frequency

![Graphs showing tip deflection for different wings at 25Hz flapping frequency.](image)

- **Figure**: L1B1 wing
 - Red curve shows tip deflection of rigid wing
 - Qualitative trends very well predicted

- **Figure**: L2B1 wing

- **Figure**: L3B1 wing
At 25Hz flapping frequency

Red curve shows tip deflection of rigid wing

- Qualitative trends very well predicted
- All three wings show lagged response
 - Larger flexibility \rightarrow More lag
Trends well predicted

Best wing

Low frequency \rightarrow L1B1
Mid frequency \rightarrow L2B1
High frequency \rightarrow L3B1

Correlation between inertial loads, wing flexibility and thrust generation

Difference between CFD and experiment

Difficulty modeling glue
Uncertainties in geometry and material properties

Thrust Comparison with Experiment

Equivalent to lift for wing flapping in horizontal plane
Thrust Comparison with Experiment

Equivalent to lift for wing flapping in horizontal plane

- Trends well predicted
- Best wing
 - Low frequency \rightarrow L1B1
 - Mid frequency \rightarrow L2B1
 - High frequency \rightarrow L3B1
- Correlation between inertial loads, wing flexibility and thrust generation
Thrust Comparison with Experiment

Equivalent to lift for wing flapping in horizontal plane

- Trends well predicted
- Best wing
 - Low frequency → L1B1
 - Mid frequency → L2B1
 - High frequency → L3B1
- Correlation between inertial loads, wing flexibility and thrust generation

Difference between CFD and experiment

- Difficulty modeling glue
- Uncertainties in geometry and material properties
At 25Hz flapping frequency

L2B1 has coherent leading edge vortex, L1B1 does not

Figure : L1B1 wing

Figure : L2B1 wing
A nonlinear aeroelastic validation study of a highly flexible flapping wing is presented using the recently developed ALE formulation of Embedded Boundary Method.

Comparison of predicted structural deformations and aerodynamic thrust with the experimental data show good qualitative agreement.

The quantitative differences are primarily attributed to the uncertainties in the structural model.

Wing flexibility beneficial, but excessive flexibility can be detrimental.
A nonlinear aeroelastic validation study of a highly flexible flapping wing is presented using the recently developed ALE formulation of Embedded Boundary Method.

Comparison of predicted structural deformations and aerodynamic thrust with the experimental data show good qualitative agreement.

The quantitative differences are primarily attributed to the uncertainties in the structural model.

Wing flexibility beneficial, but excessive flexibility can be detrimental.
A nonlinear aeroelastic validation study of a highly flexible flapping wing is presented using the recently developed ALE formulation of Embedded Boundary Method.

Comparison of predicted structural deformations and aerodynamic thrust with the experimental data show good qualitative agreement.

The quantitative differences are primarily attributed to the uncertainties in the structural model.

Wing flexibility beneficial, but excessive flexibility can be detrimental.
A nonlinear aeroelastic validation study of a highly flexible flapping wing is presented using the recently developed ALE formulation of Embedded Boundary Method. Comparison of predicted structural deformations and aerodynamic thrust with the experimental data show good qualitative agreement. The quantitative differences are primarily attributed to the uncertainties in the structural model. Wing flexibility beneficial, but excessive flexibility can be detrimental.
The authors acknowledge partial support by the Army Research Laboratory through the Army High Performance Computing Research Center under Cooperative Agreement W911NF-07-2-0027, and partial support by the Office of Naval Research under Grant N00014-11-1-0538.