High Resolution Optical Thermometer

Si Tan

Advisors: Prof. Dan DeBra
 Prof. Robert Byer
Content

- **Introduction on Optical Thermometry**
 - Project Motivation

- **Operation Mechanism**
 - Free Space Prototype Thermometer

- **Limitation & Solution**
 - Signal Calculation
 - Noise Calculation

- **Current and Future Work**
 - Laser frequency stabilization through PDH locking
 - Fiber-Coupled Thermometer
Background—Project Motivation

- The STAR spacecraft will search for variations in the speed of light at the level $\delta c/c \sim 10^{-17}$

- Requires $\delta l/l < 10^{-17}$ for ULE cavities, or a cavity temp. stability of 10^{-8} Kpp [*]

- Targets extraordinary precision of 10^{-12} in $\delta f/f$ through narrow band measurement (data average over a year)

Fig. ULE optical cavity block with two sets of orthogonal fiber-coupled cavities (courtesy Ball Aerospace).

[*] J. A. Lipa, et al. Prospects for an advanced Kennedy-Thorndike experiment in low Earth orbit Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA.
Background—Project Motivation

Fig. Six-layer thermal enclosure cutaway showing the ULE optical cavity block [*]

Fig. Results from thermal modeling the 6-stage passive thermal enclosure in the left fig [*]

[*] J. A. Lipa, et al. Prospects for an advanced Kennedy-Thorndike experiment in low Earth orbit Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA.
Optical Thermometer Conceptual Diagram

Fiber Coupled Laser Source

Cavity 1 (Reference, low CTE)
Capped with end mirrors, resonant frequency at f_1

Frequency Shifter

Feedback control to maintain laser light resonance as rod lengths change

Cavity 2 (Signal, high CTE)
Capped with end mirrors, resonant frequency at f_2

Frequency Comparator

Beat Signal Δf
System Limitation Outline

- Signal Calculation

- Noise Sources
 - Refractive index change
 - Due to pressure fluctuation ΔP
 - EOM driver noise

- Corresponding Solution

- Thermal noise
 - Mirrors, substrate, etc
 - Power buildup in optical cavity

- Mechanical noise
 - Vibration
 - Orientation
System Limitation (Noise Calculation)

- For small cavity length change ΔL, the corresponding frequency shift (hence temperature change) is

$$\frac{\Delta f_T}{f} = \frac{\Delta L}{L} = \alpha \Delta T \quad \Rightarrow \quad \Delta f_T = f \alpha \Delta T = \frac{c}{\lambda} \alpha \Delta T$$

Where $\lambda = 780nm$, α is the CTE of the cavity material

- For detection of $\Delta T = 10nK$ with steel cavity

$$\Delta f_T = 61.6Hz$$
Noise Calculation

- **EOM/AOM driver noise**
 - Frequency stability of commercial driver (SG380): $< 1 \times 10^{-11}$ (1s Allan variance) out of 2GHz, viz:
 \[\Delta f / f < 1 \times 10^{-11} \rightarrow \Delta f < 0.02Hz \]

- **Thermal noise of cavity components**
 - Noise limitation at 1Hz:
 \[\sim 0.1Hz / \sqrt{Hz} \]

Fig. Measurement of frequency noise of a 30MHz EOM driver

Fig. Thermal induced frequency noise vs. frequency[*]

Noise Calculation

- Mechanical Noise
 - Vibration
 - Cavity orientation in the presence of gravitational force

-- Fig. Freq/Accel sensitivity vs Mounting[*]

- Sub-Hertz laser linewidth can be achieved through noise cancellation based on symmetry

[*] John Lipa, “Why another Isotropy Experiment?” presentation slide 29
Summary For 10nK Resolution Requirement

Resolution $\Delta T = 10 \text{ nK} \rightarrow \Delta f_{signal} = 62 \text{ Hz}$

<table>
<thead>
<tr>
<th>Approximate Magnitude</th>
<th>System requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise due to ΔP</td>
<td>Differential pressure fluctuation $\leq 10^{-7} \text{ torr}$</td>
</tr>
<tr>
<td>EOM driver noise</td>
<td>Frequency stability of commercial driver</td>
</tr>
<tr>
<td></td>
<td>(SG380)</td>
</tr>
<tr>
<td>Thermal noise</td>
<td>Proper cavity design</td>
</tr>
<tr>
<td>Mechanical noise</td>
<td>Proper mechanical design</td>
</tr>
</tbody>
</table>

Table. System requirement for 10nK resolution
Fiber-coupled Interferometer

- Fiber-free space transmission through grin lens systems

Plot by courtesy of Grant Culter

- Optical layout design into a 3-stage vacuum compatible thermal enclosure with micro-Kelvin temperature stability (under development of Grant Culter)
Future Work

- Fiber-free space transmission through grin lenses
- Cavity design
- Vacuum system Design
- Optical layout in thermal cavity
- Beat signal analysis

Plot by courtesy of Grant Culter
Questions

THE END