Self-Pressurizing Propellant Tank Dynamics

Jonah Zimmerman
Stanford Propulsion and Space Exploration Group
Professor Brian Cantwell
May 5, 2015
Self-Pressurizing Propellants

Nitrous Oxide (N_2O)
- Storable, non-toxic
- Saturation pressure of 736 psia at 25 °C
- Critical point: 36.4 °C, 1051 psia
- I_{sp} performance similar to H_2O_2 or HNO_3
Experimental System

- **ID:** 1.0 in
- **Wall thickness:** 0.25 in
- **Length:** 14 in
- **Volume:** 11 in3
- **Material:** quartz
Videos

Gravity

Liquid

Vapor

Exit

Thermocouple probes

Liquid level

Valve

Playback speed: 1/20
Typical Results
Net Results to Date

Parameters varied:
- flow rate
- fill level
- temperature
- temperature field
- nucleation site density
- initial bubble population

Two temporal regimes:
- Early times: transient bubble nucleation
- Later times: phase equilibrium
Summary & Next Steps

Problem
- Early times: transient bubble nucleation
- Later times: phase equilibrium
- Parameter variations do not affect fundamentals

Approach

Results

Next Steps
- Experiments: evaluate scaling effects with larger system
- Modeling: use population balances coupled with 1D discretization

Conclusions
- Early times: transient bubble nucleation
- Later times: phase equilibrium
- Parameter variations do not affect fundamentals

Acknowledgments
- NASA Space Technology Research Fellowship
- Greg Zilliac & NASA Ames Research Center Experimental Aerodynamics Branch