The Flux Reconstruction Approach to High-Order Methods: Theory and Application

Peter Vincent, Patrice Castonguay, David Williams, Antony Jameson
Department of Aeronautics and Astronautics, Stanford University, California, USA

Introduction

The flux reconstruction (FR) approach is efficient, simple to implement, and allows various high-order schemes, such as the nodal discontinuous Galerkin (DG) method and any spectral difference (SD) method, to be cast within a single unifying framework [1]. Recently, we have identified a new class of 1D linearly stable FR schemes [2]. Identification of such schemes offers significant insight into why certain FR schemes are stable, whereas others are not. Also, from a practical standpoint, the resulting formulation offers a simple prescription for implementing an infinite range of intuitive and linearly stable high-order methods. We are currently extending the 1D formulation to multiple dimensions (including to simplex elements). We are also developing CPU/GPU enabled linearly stable high-order methods. We are currently extending these schemes to multiple dimensions (including to simplex elements).

Flux Reconstruction

- Consider solving the following 1D scalar conservation law within a standard element $r = [-1, 1]$, where f is a flux of u

$$\frac{\partial u}{\partial t} + \frac{\partial f}{\partial r} = 0$$

- The basic steps of a FR approach (that utilizes second-order solution polynomials) are outlined in Figure 1.

Energy Stable Flux Reconstruction

- The form of the correction functions is critical
- For linear stability of a FR scheme (that utilizes order k solution polynomials) one requires

$$\int r^i \gamma_i \, dr = \frac{0}{ck!} \left(\frac{d^{k+1}g_k}{d\gamma^{k+1}} \right)_{i = k-1}^{i = k-2}$$

$$\frac{-2}{(2k + 1)!(a_k k!)^2} < c < \infty$$

$$a_k = \frac{(2k)!}{2^{2k}(k!)^2}$$

- These conditions are satisfied if

$$g_k = \frac{(-1)^k}{2} \left(\frac{\eta_k}{L_k} - \left(\frac{\eta_{k-1} + L_{k+1}}{1 + \eta_k} \right) \right)$$

$$\eta_k = \frac{c(2k + 1)(a_k k!)^2}{2}$$

$$L_k = \frac{1}{2k!} \left(\frac{d^k}{dr^k} \left[r^2 - 1 \right]^k \right)$$

- They imply stability in a Sobolev type norm of the form

$$\left[\left| \int_1^0 (\hat{u}^2) \, dx \right| \right]_{k,2} = \left[\left| \int_1^0 \left(\frac{\partial \hat{u}}{\partial \hat{\gamma}} \right)^2 \, dx \right| \right]^{1/2}$$

- Various existing schemes can be recovered

$$c = 0$$

$$c = 2k / \left((2k + 1)(k + 1)(a_k k!)^2 \right)$$

$$c = 2(k + 1) / \left((2k + 1)(a_k k!)^2 \right)$$

- Currently undertaking Fourier analysis to understand how properties of the schemes vary with c (see Figure 2).

Implementation

- Currently developing compressible inviscid and viscous flow solvers based on linearly stable FR schemes
- Designed to work with unstructured 2D (triangular and quadrilateral) and 3D (hexahedral and tetrahedral) meshes
- Parallelized for multiple CPUs and multiple GPUs
- Almost linear scaling on multiple GPUs, running at 1.2 Teraflops (double precision) on 16 Tesla C2050 GPUs

Summary

- The FR approach unifies various well-known high-order methods within a single framework
- Recently, we have identified a range of 1D linearly stable FR schemes [2]
- We have extended these schemes to multiple dimensions (including to simplex elements)
- We are developing unstructured high-order compressible inviscid and viscous flow solvers based on the range of linearly stable FR schemes
- Solvers are parallelized for multiple CPUs and multiple GPUs

Acknowledgements

National Science Foundation (grants 0708071 and 0915006), Air Force Office of Scientific Research (grants FA9550-07-1-0195 and FA9550-10-1-0418), Nvidia Corporation.

References
