Robust Adaptive Terrain Relative Navigation

Shandor Dektor
Aerospace Robotics Lab, Advisor: Stephen M. Rock
Aero/Astro Affiliates 2014
Localization

- Localization without infrastructure
- No GPS for many motivating missions

Source: marsrover.nasa.gov
Terrain-Relative Navigation (TRN)

- **Stand-alone localization**

- **Requirements**
 - Map of terrain
 - Measurements of terrain

- **Correlate measurements against map to estimate terrain-relative position**

- **Started as cruise missile guidance**
 - TERCOM – Terrain Contour Matching (Golden 1980)

- **Meter-level AUV localization**
TRN Challenge: Flat Terrain

- Uncertainty can decrease too quickly in flat terrain
- Result: Overconfidence
- Potential Risk
 - Path planning
 - Obstacle avoidance
TRN Correlation

Measurements

Map

Probability Model

Meas. Model

Map Model

Terrain Model

Position Likelihood

\[
p(z, \hat{m} | x) = \eta \exp \left(\frac{1}{2} \left(\frac{z - \hat{m}_x}{\sigma^2_{\text{sensor}}} + \frac{\hat{m}_x}{\sigma^2_{\text{map}}} \right)^2 \right)
\]

\[
p(x | z, \hat{m})
\]
Terrain Model

- $p(m)$ encodes terrain statistics
 - Degree of terrain correlation
 - Uncorrelated terrain model = high assumed SNR

- Standard terrain model
 - Over-confident in flat terrain

- Improved terrain model
 - Correct confidence
 - Computationally intractable for large maps
TRN Correlation

Measurements

Map

\[z, \hat{m} \]

\[\eta \left(\int p(z|x, m)p(\hat{m}|m) p(m) \, dm \right) \]

\[p(x|z, \hat{m}) \]

\[p(z, \hat{m}|x) \]
Method 2: Approximating the Result

- Start with standard TRN estimator
 - Unbiased

- Adjust variance to match

\[p_{\text{approx}}(z, \hat{m}|x) = p_{\text{nominal}}(z, \hat{m}|x)^\alpha \]

- Adjustment estimated from map
Estimating Variance Adjustment

\[p_{\text{approx}}(z, \hat{m}|x) = p_{\text{nominal}}(z, \hat{m}|x)^{\alpha} \]

- **Degree of adjustment depends on terrain**
 - Flatter terrain \(\rightarrow \) More adjustment

\[\alpha = \frac{(\sigma_{\text{sensor}}^2 + \sigma_{\text{map}}^2)\tilde{\delta}^2}{(\sigma_{\text{sensor}}^2 + \sigma_{\text{map}}^2)(\tilde{\delta}^2 + \sigma_{\text{map}}^2) + \sigma_{\text{sensor}}^2\sigma_{\text{map}}^2} \]

\[\tilde{\delta}_k^2 = \text{Var}(m_x) \]

- **Adjustment estimated from map**

\[\hat{\delta}_k^2 = \text{Var}(\hat{m}_x) - \sigma_{\text{map}}^2 \]

- **Small computational burden**
AUV Demo

- Kearfott INS – Provides motion update
- RDI 300 kHz DVL – Provides range measurements
- Test region: flat area near Soquel Canyon
AUV TRN Demo

Nominal Filter

Robust Adaptive Filter

Northing (m) from 4074348 m

Eastings (m) from 591348 m

True Map-Relative

TRN Estimate

Uncertainty

Northing (m) from 4074348 m

Eastings (m) from 591348 m

True Map-Relative

TRN Estimate

Uncertainty
Gradient TRN Demo

- ATRV-Jr
 - Differential drive
 - Encoders, IMU, Magnetometer
Gradient TRN Demo

Run Time 9.99s

- Particles
- GPS

1900 1950 2000 2050 2100 2150 2200 2250 2300
1250 1300 1350 1400 1450 1500 1550 1600

Color Scale:
- 34
- 36
- 38
- 40
- 42
- 44
- 46
- 48
- 50
- 52
Conclusion

- Terrain Relative Navigation is susceptible to false convergence in flat terrain.

- Flattening probabilities as a function of estimated terrain information can improve robustness in flat terrain.
Questions?