Introduction to Biomedical Ontologies
A TWO-DAY INTENSIVE TRAINING COURSE
Barry Smith, University at Buffalo
Background

• Working in ontology since 1975, with bio-ontologists and clinical ontologists since 2002
• Working with Gene Ontology since 2004
• Co-PI of the Protein Ontology (NIH/NIGMS)
• Coordinating Editor of the OBO (Open Biomedical Ontologies) Foundry
NCBO

- Dissemination and Ontology Best Practices of the National Center for Biomedical Ontology (PI Mark Musen, Stanford)
- http://bioontology.org
Example ontologies

Basic Formal Ontology (BFO)
Common Anatomy Reference Ontology (CARO)
Environment Ontology (EnvO)
Foundational Model of Anatomy (FMA)
Infectious Disease Ontology (IDO)
Ontology for Biomedical Investigations (OBI)
Ontology for Clinical Investigations (OCI)
Phenotypic Quality Ontology (PATO)
Relation Ontology (RO)
Ontologies and terminologies examined

SNOMED
Unified Medical Language System
National Cancer Institute Thesaurus
HL7 Reference Information Model
International Classification of Functioning, Disability and Health
Collaborations

Cleveland Clinic Semantic Database for Cardiovascular Surgery Ontology
Duke University Laboratory of Computational Immunology
German Federal Ministry of Heath
European Union Emergency Patient Summary Initiative
University of Pittsburgh Medical Center
University of Texas Southwestern Medical Center
Collaborations (Brain and Behavior)

UB Task Force for Ontology-Based IT Support for Large-Scale Field Studies in Psychiatry
Jacobs Neurological Institute, University at Buffalo
Ontology Task Force (San Diego) of the Biomedical Informatics Research Network (BIRN)
Neurocommons/Science Commons (MIT)
Agenda • Day 1

• Introduction: What is an ontology and what is it useful for?
• Basic Formal Ontology: An upper-level ontology to support scientific research
• Open Biomedical Ontologies (OBO) and the Web Ontology Language (OWL)
• The OBO Relation Ontology
Multiple kinds of data in multiple kinds of silos

- Lab / pathology data
- Electronic Health Record data
- Clinical trial data
- Patient histories
- Medical imaging
- Microarray data
- Protein chip data
- Flow cytometry
- Mass spec
- Genotype / SNP data
How to find your data?

How to reason with data when you find it?
How to understand the significance of the data you collected 3 years earlier?
How to integrate with other people’s data?

Part of the solution must involve consensus-based, standardized terminologies and coding schemes.
Ontologies facilitate retrieval of data by allowing grouping of annotations

<table>
<thead>
<tr>
<th>term</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>brain</td>
<td>20</td>
</tr>
<tr>
<td>hindbrain</td>
<td>15</td>
</tr>
<tr>
<td>rhombomere</td>
<td>10</td>
</tr>
</tbody>
</table>

Query brain without ontology 20
Query brain with ontology 45
Making data (re-)usable through standards

• Standards provide
 – common structure and terminology
 – single data source for review (less redundant data)

• Standards allow
 – use of common tools and techniques
 – common training
 – single validation of data
Unifying goal: integration

- within and across domains
- across different species
- across levels of granularity (organ, organism, cell, molecule)
- across different perspectives (physical, biological, clinical)
Problems with standards

- Standards involve considerable costs of re-tooling, maintenance, training, ...
- They pose risks to flexibility
- May break legacy solutions which work locally
- Not all standards are of equal quality
- Bad standards create lasting problems
- ‘Ontology’ = good standards in terminology
The wisdom of clouds (folksonomies ...)

07 2007 2008 51207 51507 51607 51707 academy accs andy ceremony charlottesville coffee collabatory commencement compression concert conference datlat diskutili dtll dv dvd encoders engl375mm eve6 fa07 fa08 faculty facultyacademy ffmpegx foucault fredericksburg freshman fsem100j globalization grad graduation gravatar greenlaw groom header homecoming img jim jimschair js learning mary nmc nmc2007 ontology patrick presentation reverend reverendjimtshirt rush sa07 sa2007 semantic seminar student studentacademy teaching technologies transfer tshirt umw umwblogs umwead university video virginia visualizing wall washington web
07 2007 2008 51207 51507 51607 51707 academy accs andy blog centennial ceremony charlottesville coffee collabatory commencement compression concert conference datlat digital diskutility dtlt dv dvd encoders engl375mm eve6 fa07 fa08 faculty facultyacademy ffmpegx foucault fredericksburg fredericksburgnor malandindustrialinstitute freshman fsem100j globalization grad graduation gravavatar greenlaw groom header historic historical history homecoming img jim jimschair js kenmore learning marker markers mary mashup mashups microsoft nmc nmc2007 ontology patrick popfly presentation reverend reverendjimtshirt rush sa07 sa2007 semantic seminar student studentacademy symposium teaching technologies transfer tshirt umw umwblogs umwead university video virginia virginiahis toricalmarkers visualizing wall
Ontologies are, at least, controlled structured vocabularies

providing definitions and reasoning
including support for automatic validation of ontology structure
from the Gene Ontology

cytokinesis after meiosis I
NIH Mandates for Sharing of Research Data

Investigators submitting an NIH application seeking $500,000 or more in any single year are expected to include a plan for data sharing

(http://grants.nih.gov/grants/policy/data_sharing)
Title: Data Ontologies for Biomedical Research (R01)

NIH Blueprint for Neuroscience Research, (http://neuroscienceblueprint.nih.gov/)
National Cancer Institute (NCI), (http://www.cancer.gov)
National Center for Research Resources (NCRR), (http://www.ncrr.nih.gov/)
National Eye Institute (NEI), (http://www.nei.nih.gov/)
National Heart Lung and Blood Institute (NHLBI), (http://http.nhlbi.nih.gov)
National Human Genome Research Institute (NHGRI), (http://www.genome.gov)
National Institute on Alcohol Abuse and Alcoholism (NIAAA), (http://www.niaaa.nih.gov/)
National Institute of Biomedical Imaging and Bioengineering (NIBIB), (http://www.nibib.nih.gov/)
National Institute of Child Health and Human Development (NICHD), (http://www.nichd.nih.gov/)
National Institute on Drug Abuse (NIDA), (http://www.nida.nih.gov/)
National Institute of Environmental Health Sciences (NIEHS), (http://www.niehs.nih.gov/)
National Institute of General Medical Sciences (NIGMS), (http://www.nigms.nih.gov/)
National Institute of Mental Health (NIMH), (http://www.nimh.nih.gov/)
National Institute of Neurological Disorders and Stroke (NINDS), (http://www.ninds.nih.gov/)
National Institute of Nursing Research (NINR), (http://www.ninr.nih.gov)
PAR-07-425 Purpose

Optimal use of informatics tools and data resources depends upon explicit understandings of concepts related to the data upon which they compute. This is typically accomplished by a tool or resource adopting a formal controlled vocabulary and ontology.
Currently, there is no convenient way to map the knowledge that is contained in one data set to that in another data set, primarily because of differences in language and structure in some areas there are emerging standards.

Examples include:

- the Unified Medical Language System (UMLS),
- the Gene Ontology,
- the caBIG project,
- Open Biomedical Ontologies (OBO)
Uses of ‘ontology’ in PubMed abstracts
Types of ontologies

<table>
<thead>
<tr>
<th>Upper-level integrating ontologies</th>
<th>Domain ontologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontologies in support of science</td>
<td></td>
</tr>
<tr>
<td>Administrative ontologies</td>
<td></td>
</tr>
</tbody>
</table>
Types of ontologies

<table>
<thead>
<tr>
<th>Upper-level integrating ontologies</th>
<th>Domain ontologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontologies in support of science</td>
<td>BFO (Basic Formal Ontology)</td>
</tr>
<tr>
<td></td>
<td>DOLCE, SUMO</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrative ontologies (e-commerce, etc.)</td>
<td>FOAF top level: person, topic, document, primary topic ...</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scientific ontologies vs. administrative ontologies

BFO, GO, FMA ...

vs.

Library of Congress Catalog, Yahoo ontology, FirstGov Life Events Taxonomy, ...
Part of our goal is realized if we can create controlled terminologies.

In science we can and must go further than this.
Why build scientific ontologies?

There are many ways to create terminologies
Multiple terminologies will not solve our data silo problems
We need to constrain terminologies so that they converge
Evidence-based terminology development

Q: What is to serve as constraint?
A1: Authority?
A2: First in field (Founder effect)?
A3: Best candidate terminology?
A4: Reality, as revealed, incrementally, by experimentally-based science
The standard methodology

• Pragmatics is everything
• It is easier to write useful software if one works with a simplified model
• (“…we can’t know what reality is like in any case; we only have our concepts…”)
• This looks like a useful model to me
• (One week goes by:) This other thing looks like a useful model to him
• Data in Pittsburgh does not interoperate with data in Vancouver
• Science is siloed
The methodology of ontological realism

- Find out what the world is like by doing science, talking to other scientists and working continuously with them to ensure that you don’t go wrong
- Build representations adequate to this world, not to some simplified model in your laptop
- Ontology is ineluctably a multi-disciplinary enterprise – need to work hard to overcome the resultant terminological confusions
Our first job is in to create a common understanding of terms such as:

- universal, type, kind, class
- instance
- model
- representation
- data
Entity = def

anything which exists, including things and processes, functions and qualities, beliefs and actions, documents and software
Scientific ontologies have special features

Every term must be such that the developers of the ontology believe it to refer to some entity on the basis of the best current scientific evidence

(Important role of instances that we can observe in the laboratory)
Administrative ontologies

• Entities may be brought into existence by the ontology itself. (Convention ...)
• Highly task-dependent – reusability and compatibility not (always) important
• Can be secret
• Are comparable to software artifacts
For scientific ontologies

openness, reusability and compatibility with neighboring scientific ontologies are crucial

- Scientific ontologies must evolve gracefully
- Scientific ontologies must be evidence-based
- Scientific ontologies are comparable to scientific theories
The central distinction

universal vs. instance

(catalog vs. inventory)

(science text vs. diary)

(human being vs. Arnold Schwarzenegger)
Science texts are representations of universals in reality

= representations of what is general in reality
Clinical guidelines are representations of universals in reality:

diseases, therapies, diagnostic procedures (measurements) are generals, with particular instances in particular patients.
Ontologies are representations of universals in reality

aka kinds, types, categories, species, genera, ...
A 515287 DC3300 Dust Collector Fan
B 521683 Gilmer Belt
C 521682 Motor Drive Belt
Catalog vs. inventory
For scientific ontologies

it is *generalizations* (universals) that are important

For databases it is (normally) instances that are important

= particulars in reality:
 - patient #0000000001
 - headache #0000000004
 - MRI image #23300014, etc.
substance

universals

organism

animal

mammal

cat

siamese

substance

instances

frog

45
In a scientific ontology

every node in the ontology should represent both universals \textit{and} the corresponding instances in reality

every term should reflect instances – it is instances which form the objects of our experiments

to do this is hard work …
Each term in an ontology represents exactly one universal

For this reason ontology terms should be singular nouns

- headache
- human being
- drug administration
An ontology is a representation of universals

We learn about universals in reality from looking at the results of scientific experiments as expressed in the form of scientific theories – which describe, not what is particular in reality, but what is general
A photographic image is a representation of an instance
Three Levels to Keep Straight

- Level 1: the entities in reality, both instances and universals

- Level 2: cognitive representations of this reality on the part of scientists ...

- Level 3: publicly accessible concretizations of these cognitive representations in textual and graphical artifacts
Ontology development

starts with: Level 2 = the cognitive representations of practitioners or researchers in the relevant domain

results in: Level 3 representational artifacts (comparable to maps, science texts, dictionaries)
Domain = def.

a portion of reality that forms the subject-matter of a single science or technology or mode of study;

proteomics
HIV
demographics
...

52
Representation =def.

an image, idea, map, picture, name or description ... of some entity or entities

two kinds of representation:
 analogue (photographs)
 digital/composite/syntactically structured
Representational units =def terms, icons, alphanumatic identifiers ... which refer, or are intended to refer, to entities

and which are minimal (‘atoms’)

54
Composite representation =def

a representation
(1) built out of representational units
which
(2) form a structure that mirrors, or is intended to mirror, the entities in some domain
Analogue representations
The Periodic Table

<table>
<thead>
<tr>
<th></th>
<th>H 1</th>
<th>Li 3</th>
<th>Be 4</th>
<th>B 5</th>
<th>C 6</th>
<th>N 7</th>
<th>O 8</th>
<th>F 9</th>
<th>Ne 10-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na 11</td>
<td>Mg 12</td>
<td>Al 13</td>
<td>Si 14</td>
<td>P 15</td>
<td>S 16</td>
<td>Cl 17</td>
<td>Ar 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 19</td>
<td>Ca 20</td>
<td>Sc 21</td>
<td>Ti 22</td>
<td>V 23</td>
<td>Cr 24</td>
<td>Mn 25</td>
<td>Fe 26</td>
<td>Co 27</td>
<td>Ni 28</td>
</tr>
<tr>
<td>Rb 37</td>
<td>Sr 38</td>
<td>Y 39</td>
<td>Zr 40</td>
<td>Nb 41</td>
<td>Mo 42</td>
<td>Tc 43</td>
<td>Ru 44</td>
<td>Rh 45</td>
<td>Pd 46</td>
</tr>
<tr>
<td>Cs 55</td>
<td>Ba 56</td>
<td>La 57</td>
<td>Hf 72</td>
<td>Ta 73</td>
<td>W 74</td>
<td>Re 75</td>
<td>Os 76</td>
<td>Ir 77</td>
<td>Pt 78</td>
</tr>
<tr>
<td>Fr 87</td>
<td>Ra 88</td>
<td>Ac 89</td>
<td>Rf 104</td>
<td>Ha 105</td>
<td>??</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lanthide Series

- Ce 58
- Pr 59
- Nd 60
- Pm 61
- Sm 62
- Eu 63
- Gd 64
- Tb 65
- Dy 66
- Ho 67
- Er 68
- Tm 69
- Yb 70
- Lu 71

Actinide Series

- Th 90
- Pa 91
- U 92
- Np 93
- Pu 94
- Am 95
- Cm 96
- Bk 97
- Cf 98
- Es 99
- Fm 100
- Md 101
- No 102
- Lr 103
We can’t take photographs of universals

But we can create cartoons and diagrams
Ontologies are here
Ontologies do *not* represent concepts in people’s heads
Like the scientific theories from which they derive, they represent universals in reality

e.g. leg
Compare the typical relations used in medical ontologies

part_of
connected_to
adjacent_to
causes
treats ...
“leg” is not the name of a concept

concepts do not stand in

part_of

connected_to

adjacent_to

causes

treats ...

relations to each other
The Gene Ontology

is_a ─

part_of ─

biological process

developmental process

regulation of biological quality

death

biological regulation

homeostatic process

homeostasis of number of cells

immune system process

cellular developmental process

cellular process

cell differentation

cell development

leukocyte homeostasis

cell death
How do we know which general terms designate universals?

Roughly: terms used in a plurality of sciences to designate entities about which we have a plurality of different kinds of testable propositions / laws

(compare: cell, electron, membrane ...)

68
Class =def.
a maximal collection of particulars referred to by a
general term

the class $A = \text{def.} \text{ the collection of all particular } A$’s

where ‘A’ is a general term (e.g. ‘brother of Elvis fan’, ‘cell’)

Classes are on the same level as the instances which they contain
Extension = def

the collection of all particular A’s, where ‘A’ is the name of a universal
universals vs. their extensions

The extension of the *universal* A is the class of A’s instances

- universals
- \{a,b,c,...\}collections of particulars
Problem

The same general term can be used to refer both to universals and to collections of particulars.

HIV is an infectious retrovirus

HIV is spreading very rapidly through Asia
a spectrum of cases

cell membrane retina lung

brother of Elvis fan
chemical whose name begins with ‘B’
Not all classes correspond to universals

\{c, d, e, \ldots\} \quad \text{classes}

universals
Administrative ontologies often go beyond universals

Fall on stairs or ladders in water transport injuring occupant of small boat, unpowered

Railway accident involving collision with rolling stock and injuring pedal cyclist

Non-traffic accident involving motor-driven snow vehicle injuring pedestrian

ICD (WHO International Classification of Diseases)
universals vs. classes

universals

defined classes
Defined class =def

a class defined by a general term which does not designate a universal

person called ‘Chris’

person with diabetes in Maryland on 4 June 1952
OWL (Ontology Web Language) is a good representation of defined classes

sibling of Finnish spy
member of Abba aged > 50 years
property-owning farm employee

such set-theoretic combinations are at the heart of many administrative ontologies
(Scientific) Ontology =def.

a representational artifact whose representational units (which may be drawn from a natural or from some formalized language) are intended to represent

1. universals in reality
2. those relations between these universals which obtain universally (= for all instances)

\[
\text{lung is_a anatomical structure}
\]
\[
\text{lobe of lung part_of lung}
\]