Instructor’s Foreword

There are topics that lend themselves, almost always, to dualist rhetoric. In the case of the United States’ actions in Hiroshima, for example, it is not unusual to read an account that unequivocally argues for it, or, against it. But the truth is that historical moments such as these, even in hindsight, cannot be reduced to such facile discourses of “good” or “bad.” Anne Datesh, no doubt, understands the nature of complex arguments and the dangers of dualist thinking.

In her essay, “The Decision to Drop the Bomb: Where Hindsight is Not 20/20,” Anne takes a difficult position: she acknowledges that Hiroshima marked the end of the war, and thus the decision to drop the bomb stopped the killing. But she also argues that the end, to stop the war, does not necessarily justify the means—the damage that detonating the atomic bomb did both to the people of Japan and to the collective human psyche. “Hindsight,” Anne argues, “is not 20/20.” Is it better to have dropped the bomb? Is it better to have let the war, and the killings, continue?

When we read this essay, we cannot miss the obvious fact that in order to build such a complex argument, Anne had to carry out extensive research, weaving together personal accounts, historical and government documents, as well as the opinion of other historians and researchers. Anne’s astute reading of primary sources and her tireless investigation of government and historical documents is exemplary; her powerful narrative style, moreover, leads us through this historical moment with much excitement, almost as much as the author displayed when carrying out her research and writing for this essay. Reading this essay is akin to mental gymnastics: one moves through the rhythmic narrative of historical facts fluidly, yet this fluidity is but a mask for the complexity of each argument presented, arguments that leave us with a great deal to think about.

Corinne Arraez
The Decision to Drop the Bomb: Where Hindsight is Not 20/20
Anne Datesh

On August 6, 1945, the world witnessed the greatest form of destruction then known to man when the U.S. dropped the first nuclear bomb on Hiroshima, Japan. Never before in history had a weapon of such mass and sweeping destruction been unleashed. This bomb was the product of the accumulation of centuries of scientific experimentation that was accelerated in August of 1942 by scientists and physicists working in the military’s Manhattan Engineer District, which cost thousands of man hours and over two billion dollars (Timeline 1940). The central and top-secret mission of this group, the development of an atomic weapon, was codenamed the Manhattan Project. Scientists and engineers worked secretly and diligently all across the United States to create a nuclear fission, chain reaction bomb that would tap atomic power for the capacity to destroy entire cities (Bracchini). On July 16, 1945, at the Trinity test, they succeeded. The tester, a plutonium bomb called Gadget, was detonated at 5:30 a.m. near Alamogordo, New Mexico, and those scientists present were the first witnesses to the incredible scope of destruction caused by an atomic bomb (Bracchini). The two other bombs built by the Project, Little Boy and Fat Man, were later dropped on Hiroshima and Nagasaki, Japan, amidst great controversy among leaders in the Project, the military, and the nation. By completing its goal, the Project had borne a weapon into a time when complicated military and political strategy prompted a questionable action that would mark a clear change in the course of history. In fact, the decision to drop the bombs resulted from a confluence of many contemporaneous factors, including pressure put on the Project by World War II, speculation over the development of nuclear weapons in other nations such as Germany and Russia, and the uncertainty of the Japanese surrender needed to end the war without the use of the bombs. The historic action went on to spawn the subsequent arms race that launched the Cold War and the general sense of fear associated with that time period, and developments in nuclear weaponry continue to affect international policy today. It is through this multifaceted analysis of the history of the weapons and the drop’s effect on history itself that one can gain a better understanding of the use of the bombs, viewing it not simply as a cutthroat military tactic or a political power play, but as a complex and radical turning point in history.

The Manhattan Project, the largest secret project ever undertaken by the U.S. government, was established to build a weapon of unimaginable power with virtually no one in the public, military, or government being aware. The group in charge of the Project took painstaking care in keeping information classified, even from the engineers, scientists, and private companies working in the lower levels of the Project. This elite group of men included the military leader of the Project, General Leslie Groves, Secretary of War Henry L. Stimson, and scientists Robert J. Oppenheimer, Neils Bohr, Enrico Fermi, and Leo Szilard. With the exception of Gen. Groves and Stimson, these men were leading scientists in the development of nuclear technology and two had actually been exiled from Germany (Rhodes). Prior to the conception of the Project, discoveries in nuclear physics
began to mount, from the conceived possibility of a nuclear chain reaction, to the discovery of fissionable elements such as uranium–235 and plutonium–239, to the first controlled chain reaction being achieved by Fermi at the University of Chicago in December of 1942 (Herken). A fission reaction occurs when a neutron is captured by the nucleus of a radioactive element, which then becomes unstable and splits into two lighter atoms, emitting two or three neutrons in the process. What creates the nuclear reaction used in an atomic bomb is when these emitted neutrons are then captured by other nuclei in the reactor, creating a chain reaction that propagates into the huge explosion associated with atomic bombs (Freudenrich). This science was a vital basis for the strenuous work and intense thought that encompassed the Manhattan Project.

The Project began as a weapons race with Germany. However, developments in international intelligence and correspondence from trusted officials catapulted it to one of the most important projects in the nation. The first warning came from Albert Einstein, who, at Leo Szilard’s proposal, signed an urgent letter to President Roosevelt discussing Germany’s likely ability to create a weapon of incredible power, and its capacity to do so long before the U.S. could hope to complete such a weapon. Szilard was alarmed at the lack of action on the part of the U.S. government to begin developing nuclear power, and after finding no official support within the government, he looked outside to Einstein, his trusted friend. Einstein gladly complied with Szilard’s request, but would later regret his support of the weapon. The letter, received on August 2, 1939, was the first direct warning by a well-respected scientific mind of the need for “watchfulness and if necessary, quick action on the part of the Administration” (Einstein). Einstein explained to Roosevelt the facts behind the vast expanse of nuclear experiments. He knew that uranium and other radioactive elements could, in the very near future, be harnessed to create a new type of energy, specifically new types of bombs, and he warned the president of the U.S.’s utter lack of material and knowledge on the subject of that energy. Einstein stressed the need to speed up and widen the experimental nuclear work going on in the United States and the telling fact that Germany had ceased the sale of uranium from its mines (Einstein). This was significant proof that Germany had begun and was likely far along in the building of atomic weapons. This letter and its contents confirmed and elevated fears that the Germans were getting very close to creating the bomb. Roosevelt responded with thanks and immediately “convened a Board consisting of the head of the Bureau of Standards and a chosen representative of the army and navy to thoroughly investigate the possibilities... regarding the element of uranium” (Roosevelt). As the United States continued to learn about German efforts, the need to top those efforts became clear, and the Manhattan Project was begun.

The Project resulted in more than merely a military effort to create superior weapons, but a scientific breakthrough that would revolutionize science, warfare, and, without exaggeration, change the future of mankind. These were times when the military aggression and fevered expansionism of Nazi Germany necessitated forms of self-defense that were unprecedented and dramatically potent. The atomic bomb was born out of the pressure of the ongoing war between Axis and Allied powers (Rhodes 93). Many nations had secret programs for building up and improving their arsenals of weapons, but it was prominently Germany and the United States that had the resources, both financial and intellectual, to tackle the complex and dangerous study and development of nuclear weaponry. The U.S. had been informed of Germany’s capability in nuclear physics and manufacturing and realized it must go to any lengths to develop the weapons first. Because of the high stakes associated with the world domination sought by the Axis powers, leaks
in the Project had to be prevented at all costs, kept from both Germany and the general public. Any such leak could provide Germany with what it needed to achieve the weapon first, a devastating blow not only to the United States, but the world.

Leaders of the Project, most of whom were doing research at Los Alamos or working at headquarters in the Oak Ridge, Tennessee and Hanford, Washington pilot plants, determined what would be done at each of the many smaller plants across the country, and what their directors would know (Timeline 1940). The leader of the Project’s security program, Colonel James C. Marshall, created the Protective Security Section to control personnel, plant, and national security. If the Project or its progress leaked out to the American public, it would promptly leak to Germany, who would subsequently quicken the pace of its program. The security and vast amount of counterintelligence needed to avoid this problem became very intricate and complex due to the large number of plants in use across America. All in all, there were more men working on the Manhattan Project than in the booming automobile industry, although most with no knowledge of the Project itself (Manchester). The system abruptly grew so complex that the Intelligence and Security Division and its six separate branches were established to keep the security system running. Members of the Security Division, serving on the Clinton Engineer Works (“CEW”), Safeguard of Military Information (“SMI”), Security, and Administration branches, focused on keeping information inside the specific plant to which they were assigned and away from the outside world (“Safeguarding Mil Info Regulations”). The information that was shared was based on a system of rigid compartmentalization; each plant or laboratory would be working toward a smaller goal of the Project (e.g. testing effects of radiation or creating a stable chain reactor), which, when it was accomplished, would be taken to another group of the SMI branch to begin subsequent work toward the ultimate goal of a nuclear bomb (Herken 85). Before information was transferred, no lab knew of any other lab or the work being done within. Problems arose on account of this strictly compartmentalized security, impeding scientists from sharing information amongst themselves. Leo Szilard maintained that the intense “compartmentalization of information was the cause for failure to realize that light uranium, U235, might be produced in quantities sufficient to make atomic bombs... we could have had it eighteen months earlier. We did not put two and two together because the two twos were in a different compartment...” (Nichols). Fortunately, this kind of issue did not create a big problem for the Project, and work went on industriously toward the completion of the bomb.

Danger came not only in the leaking of information but from working on the project itself, since much of the Project was devoted to the study of radioactive elements. CEW officials went to great lengths to cover up cases of death, disfigurement, and toxic hazard caused by radiation that could leak out to the communities surrounding the research centers and blow the Project’s cover. The need for knowledge of safe levels of radiation became crucial. Scientists in the hospitals at the Universities of Rochester, Chicago, and California tested the effects of radiation by injecting plutonium and uranium into patients to ascertain the necessary safety requirements for workers. However, the government abandoned this program, likely on an ethical basis (Cantwell). Questions began to be raised regarding the safety of the workers, but the provision of wartime secrecy prevented these questions from spreading to the public or even to those afflicted, many of whom were kept unaware of the details of their conditions, let alone that radiation was probably the cause. All scientists working on the Project knew that it was top secret, they just did not know why, or what the goal was. Those raising problematic questions were immediately “taken care of” by undercover officers of the Administration Security branch stationed in the plants, and
usually completely removed from the Project by the next day (Kirkpatrick). The last thing the Project wanted to do was to allow anyone to make waves or draw attention to it. Nevertheless, Congress began to become suspicious of the huge amounts of funding going to the Manhattan Engineer District and created a panel to investigate—the Committee to Investigate the National Defense Program—ironically including future President Harry S. Truman, the very man who would later give the order to drop the bomb. However, the investigation into the Project was never accomplished. Truman noted that Henry Stimson, the well-respected secretary of war, warned him to call off the investigation into the unaccounted millions of dollars, and he did so, on Stimson’s word alone (Rhodes 617).

Later, Truman himself needed to be briefed on the bomb, being informed of its existence by Stimson within twenty-four hours of Franklin Roosevelt’s death on April 12 and fully briefed on its magnitude by April 25. Due to the lack of knowledge about the bomb in the government, Stimson and Gen. Groves, two of the only men with full knowledge of the proceedings, informed Truman that within “four months we shall in all probability have completed the most terrible weapon ever known in human history, one bomb of which could destroy a whole city” (Rhodes 624). These three men alone could not handle the decisions associated with the bombs and needed to utilize a broader scope of knowledge when creating the plans for the bomb. Therefore, the Interim Committee was created to compensate for the thus-far ignorant members of the cabinet and to avoid undermining Congress if they planned to create a postwar commission. This civilian committee first met on May 9, 1945, in the wake of momentous change, only one day after V-E Day (Rhodes 629). Chaired by Stimson, the committee included men such as MIT President Karl Compton, Assistant Secretary of State William Clayton, Undersecretary of the Navy Ralph A. Bard, and Jimmy Byrnes, Roosevelt’s right hand man and later Truman’s secretary of state. These men had to be briefed by a scientific panel set up adjunct, including Oppenheimer, Fermi, Compton, and Lawrence, the top scientists at Los Alamos (Rhodes 628–630). The Committee was entirely secret, and its discussions classified. Not even those in the highest ranks of government knew of the Project, and the men in charge wanted it to stay that way.

More important than keeping information from the public and our own government, the distinct risk for espionage and sabotage from Germany, Japan, and the Soviet Union was a subject of grave concern. With the vast number of people from all backgrounds and all across the country being hired onto the Project, the potential for saboteurs and spies was unnervingly high. Security checks could only go so far, and Security District branches of the Counterintelligence Corps (“CIC”) were put in charge of extensive preemptive security checks to avert any breaches of security, but compromises had to be made because of a lack of scientifically qualified personnel in the interests of speed of completion (Groves 141). One shocking example of this was Oppenheimer himself, who was given a moderate security clearance despite past connections with German communist organizations, and was appointed as the director of the Los Alamos plant and was the de facto leader of the scientific elements of the Manhattan Project. Oddly enough, it was not from Germany but from our wartime ally, Russia, that the Security District’s CIC Detachment discovered multiple incidents of espionage. The most famous case is that of Julius and Ethel Rosenberg, a couple who passed atomic secrets to the Soviet Union. After a very public trial, the two were executed for treason in Sing Sing prison in 1953. In most other cases it was the large amount of Soviet diplomats and officials in the United States that made it easy for Russian spies to begin obtaining information on
radiation research under pretenses of expediting an Allied victory, and transmitting it to Russian leaders (Herken 106). When the participants in this sort of espionage were identified, they were drafted into the army and placed in low-level positions where they could be monitored. This was common practice in incidents of espionage and security violations associated with the Project, because, for obvious reasons, the suspects could not be publicly prosecuted (Groves, “Summary”). The tight security measures surrounding the Project worked amazingly well, and no cases of espionage or sabotage were truly detrimental to the construction of the bomb or to the secrecy of the Project.

Once the grueling process of completing the weapon was concluded, discussions on the bomb turned from how to build it to how to use it, whether to use it, and if it was necessary in order to secure a surrender from Japan. This fostered heated moral, political, and diplomatic debates among the small group leading the Project (Alperovitz 163). The pressures on the decision stretch as far back as the beginning of the war, but most importantly, they began just after the death of President Roosevelt on April 12, 1945. His successor, President Truman, came to office during an incredibly important month in the war. There was a power shift in the Japanese government, as the Koiso government was replaced by the Suzuki government, and U.S. troops landed on Okinawa on April 1, gaining a strategic foothold in the war with Japan. Only four days later, news broke that Russia was not renewing the Russo-Japanese Neutrality Pact, which left the door open for Russian aid to America’s Pacific war effort and intensified the threat to Japan. At the end of the month, on April 30, Hitler committed suicide, which shocked the world and led to the immediate surrender of the collapsing German forces on May 8. Now the eyes of the world turned to Japan, and the war in the Pacific (Alperovitz 98–109). Japan was against a wall politically and economically; it had no allies, and the U.S. had blockaded its ports and access to food. Truman stood firm on his terms of unconditional surrender of the military, telling Congress on April 18 that: “We will not traffic with the breakers of the peace on the terms of peace” (Alperovitz 39). Japan’s terms insisted on protecting its emperor and its way of life, imagining the U.S.’s intent was to kill the emperor and enslave the people. However, the U.S. simply could not allow Japan’s government to remain in power without risking later corruption or even another attack on America. This left negotiations seeming only capable of delaying the war that Japan had made it clear it would fight to the last man (Archive 77). As the need for a war became clear, the United States faced new problems, as questions over the cost of lives lost in the war brought about political debates in the U.S. as well as diplomatic issues with Russia. After the disintegration of the Russo-Japanese Neutrality Pact, Russia was ready and willing to help the U.S. in the war with Japan, which, along with support from Britain, would leave the Japanese almost helpless against the united strengths of the three Allied powers, but for the United States to be in debt to Russia was a topic of serious concern. After the Yalta Conference in February of 1945, where the Soviets were overstepping their bounds in the division of Europe, relations with Russia—both personal and political—deteriorated. Albert Einstein noted a “desire to end the war by any means… before Russian participation” (Alperovitz 127). This created a paradox for U.S. officials. Enlisting Soviet help would mean the U.S. would be indebted to arrogant and untrustworthy Russia. However, fighting the war without Russia could mean a prolonged and bloody war for America, while Russia spent the time surpassing the U.S. in science, technology and other fields. These power politics led the U.S. to be anxious to end the war on its own, as soon as possible. The solution, it seemed, was only too obvious—the atomic bomb. It was certain that the Japanese would commit wholeheartedly to the war, and that they would never submit to unconditional surrender.
without a realization of the inevitability of defeat, a purpose which the bombs would serve perfectly (Alperovitz 614). So, the debate over dropping the bomb began, hesitantly, and, as scientist was pitted against scientist, politician against politician, the debates were heated and well supported.

The two sides of these debates are best shown by the opposing views of Jimmy Byrnes, Truman’s new secretary of state, and Henry Stimson, the secretary of war, but to best understand the two different sides, one must first understand conditions within Japan itself. Japanese economic and political situations were dismal, caused by the U.S. blockade and the German surrender leaving Japan with no outside support. Despite their dire straits, the values of honor and respect instilled in the Japanese as a people and the self-sufficiency born from their isolationism kept them from surrendering their country, and their emperor. Surrender, they mistakenly thought, would see their emperor, their deity, killed as a war criminal, and their people subject to the will of the nation threatening to invade their shorelines, the United States (Alperovitz 37). Their nation’s spirituality and pride would be risked, and that was something with which the Japanese could not cope. Politically, Japan did have a hope in the disunity of the Allies, namely Russia and America. Therefore, up to and throughout April, Japan’s plan was a massive battle for their homeland, with no surrender in sight (Feis).

These conditions actually provided support for both opinions. Japan was already in shambles, and bombing them would not serve any honorable purpose; on the other hand, the fact that Japan was still willing to commit national suicide by fighting alone against the Allied powers was enough to prove the need for a drastic measure such as the bombs (Alperovitz 376). Jimmy Byrnes viewed the bomb as a useful tool that would allow the U.S. to control terms at the end of the war (Rhodes 619). It would allow the U.S. economy to normalize by ending the war, and using it was the only way to justify the vast expense of the Manhattan Project. Byrnes advocated keeping the bomb a secret because it was power in politics just as money is power to a bank, and he criticized Stimson when he shared the information with the British without a quid pro quo. Byrnes also believed that Japan would not surrender without accepting its defeat as imminent, creating more casualties than would the dropping of the bomb. The political and military standpoint from which Byrnes considered the bomb stressed its demonstration of our might to Russia, and the leverage it would create in diplomacy (Rhodes 634). Stimson on the other hand looked at the bomb from a more theoretical and philosophical point of view. Aside from being immoral, he believed that dropping the bomb would shape the future in ways that needed to be considered. Once others had the weapons, namely Russia, America would no longer have its edge in superior arms technology. Stimson also foresaw the resulting dangerous international relations with Russia, who had not yet been informed of the bomb’s existence. Stimson further warned of the lasting effects of the bomb, both physical and psychological, and that it was a ruthless tactic that should not be used for military expediency (Rhodes 622). Truman’s decision was influenced by many of these and other, less noble factors, including the slim—to—none chance of his reelection if the public learned he had wasted money and the lives of American soldiers by shelving a weapon that could have ended the war, the fact that the Japanese attacked first at Pearl Harbor, and the impending congressional inquiry into the misappropriation of upwards of two billion dollars if they did not see the effects of the bomb. Still, the number one articulated goal for the dropping of the bomb was to save lives, both American and Japanese, by preventing a drawn out land invasion of Japan.
Eventually, the decision was made to drop the bomb, and the Interim Committee met to determine the best locations and discuss the aftermath of the drops on a national and worldwide scale (Rhodes 630). The scientific advisory panel was joined by military and weather advisors, along with Japanese history experts in order to ensure the drop would be successful in terms of military and psychological results. First, the plane was chosen: a B–29, which had a range of only 1,500 miles. This created a need for good weather on the drop dates, but despite January being the best weather month, August was settled upon for expediency. Scientists suggested submarines be deployed near the target areas to radio back weather, radiation, and other effects of the bombs. The chosen targets preferably needed to be military bases whose destruction would be detrimental to the Japanese will (Truman). In order to see the scope of destruction of the bomb, the cities also needed to be relatively untouched by the air raids of the 20th Air Force that had been “systematically bombing out the following cities with the prime purpose in mind of not leaving one stone lying on another: Tokyo, Yokohama, Nagoya, Osaka, Kyoto, Kobe, Yavata…” (Archives 42, 46). This left targets scarce because most of the cities large enough to confine the bomb were already destroyed. The Air Force reserved five targets as sites for the bomb: Kyoto, the former capital and intellectual center of Japan to which many refugees were being moved; Hiroshima, a huge army depot that was surrounded by hills which could focus the blast inward; Yokohama and Kokura, which were both military arsenals; and Niigata, which was actually originally chosen as the second city before Nagasaki. The scientific advisors stressed the need for appropriate detonation heights and consideration of radiological effects, while the military stressed psychological factors and the need to drop the bomb soon or there would be no cities in Japan left to bomb. Finally the two targets, Hiroshima and Nagasaki, were chosen. The test date at Los Alamos was set for July 16, and those against the dropping of the bombs made one last effort to prevent any action being taken.

Petitions were sent to the President by scientists, some advocating and others opposing the use of the bomb, and although the effects of the petitions in opposition may have been more dramatic if proposed earlier in the process, their influence this far down the line was minimal, despite their noble intentions. The first petition was in actuality merely a memo, and was received in June of 1945. It was drafted by the some of the head scientists at Los Alamos, including Oppenheimer, Compton, Lawrence, and Fermi. These men were also the scientists who were advising the Interim Committee, and their opinions on the subject held great weight for those in the committee and for President Truman himself. Their recommendation advocated the immediate use of nuclear weapons to “promote a satisfactory adjustment of our international relations” (Scientific Panel). The United States needed to show its military might to Japan, but also, and maybe more importantly, to the Soviet Union. The bombs would serve that purpose perfectly. This memo prompted Leo Szilard, ironically the man who had advocated the creation of the bomb, to take action against it (Einstein). He and sixty–nine cosigners, in a petition from the Metallurgical Laboratory in Chicago dated July 17, 1945—only one day after the test date—urged President Truman to consider the moral responsibilities associated with the unjust action of dropping the bomb (Archives 76). This was a dramatic step, and was a counterstrike to the June 16 memo from scientists such as Oppenheimer, Lawrence, Compton, and Fermi that advocated the immediate use of nuclear weapons (Archives 76, cover page). The petition stressed the lack of justification for such a ruthless act and the ramifications of almost limitless “destructive power which will become available in the course of future development… opening the door to an era of devastation on an unimaginable scale” (Oak Ridge Petition). Whether Szilard’s change of heart came from the German surrender or
from seeing the awful power of the bomb at the test, he and the other scientists opposed to the drop felt that they must make their voices heard, regardless of the effect. The Szilard petition was regarded with hostility from some, particularly those in the military, but with respect from others. Even before organizing the petition, Szilard had begun to come under scrutiny, with Gen. Groves himself seeking evidence against him (Archives 201). Two later petitions, the Oak Ridge Petitions, arose addressing other significant points and demonstrating the amount of dissent among scientists. Both followed the Szilard petition in asserting that the bomb would impose “world-wide social and political consequences” that would only serve to be detrimental to the United States and that, without warning the nations of the world, would propose diplomatic and military problems as well (Oak Ridge Petition). These opposing petitions sprang from multiple factors, including the moral issues behind dropping the bomb, the realization of the power of the bomb, and the understanding that with the defeat of Germany, the purpose for the production and use of the bomb was hypothetically eliminated. They urged the president to alert our allies to our intentions and to allow Japan a chance to surrender with the knowledge that a refusal would be followed by the use of a new weapon. These petitions were, however, largely disregarded over fear that Japan would take American hostages and prisoners into the cities being bombed, and of the horrors of the otherwise inevitable war. While the debates over the bombs were becoming more divided, President Truman was focusing more on whether to tell Russia about the bombs than to reverse his decision at this point.

Many who had considered the subject believed that it was advisable to inform the Soviet Union of the success of the Manhattan Project in order to prevent postwar feelings of suspicion and hostility. Even through Winston Churchill’s pleas for an earlier Big Three meeting to discuss the bomb prior to July 24, 1945 at the Potsdam Conference, no mention to Russia of the bomb had been made. Oppenheimer recalled intense “pressure to get [the bomb] done before the Potsdam Meeting” (Alperovitz 148). Truman had postponed the meeting for as long as possible, to the intense frustration of Churchill, until he was sure that the U.S. had a working bomb. In regards to informing Stalin, although Russia had kept its word in most military matters, Truman had intelligence from all sides that Stalin was not to be trusted. Averell Harriman, the ambassador to Russia, stressed that Truman realize Stalin was breaking the Yalta agreements, planning to take over neighboring countries and install Soviet control. Most were in agreement that any transfer of intelligence to Russia had to be done carefully and prudently. Stimson wanted to extract a reciprocal benefit, namely the democratization of Russia, in return for information about the bomb (Stimson). Other advisors counseled Truman to brief Stalin on the weapon, as we had Churchill, to forestall an arms race. Truman chose only to informally tell Stalin of “a new weapon of unusual destructive force” (Byrnes 263). Although Stalin showed no reaction, Truman’s action quite possibly pushed the Soviets to rush their own production of an atomic bomb. Fear of this pushed the U.S. to take subversive steps against the Soviets, buying up uranium deposits and tightening security around Russian officials, causing a break in Russo–American relations that would begin a short time before the bombs were dropped and last throughout the Cold War (Alperovitz 158).

After years of work and months of debate, Little Boy was dropped on Hiroshima on August 6, 1945. The target was the Aioi Bridge; the bomb missed by only fifty feet. A warning in the Potsdam Proclamation had told the Japanese they would face “prompt and utter destruction” if they did not surrender immediately, and the devastation was incredible. In an instant, over 66,000 people were killed, and another 69,000 injured. Fat Man was dropped on Nagasaki three days later, dropping its population in a fraction
of a second from 422,000 to 383,000, and leaving over 25,000 others injured. A black stone monument marks the hypocenter of the bomb, which vaporized, burned, and killed everything in its path and scourged thousands of others with radiation poisoning and mutilation. Truman later declared that the “force from which the sun draws its power had been loosed against those who brought war to the Far East” (“The Atomic Bomb”). It was an action that would change the course of history.

The decision to drop the atomic bombs on Japan was a topic of intense debate on all sides of the political spectrum then, and continues to be today. Historians take hard stands on the value, morality, and justification of dropping the bomb. One of the most well–known quotes on the dropping of the bomb from the past is that of General Dwight D. Eisenhower. Although expected to react with fervent assent, Eisenhower expressed his misgivings about dropping the bomb and his opinion that, “the Japanese were ready to surrender… it wasn’t necessary to hit them with that awful thing” (Eisenhower 380). As a high–ranking member of the armed forces, Eisenhower stands out as a surprising voice of dissent among both the military and conservative American officials. General Douglas MacArthur, America’s top general in the Pacific, shared Eisenhower’s sentiment, noting the lack of military justification for dropping the bomb. Among the members of the White House staff and cabinet who also added their disapproval, some members of the Interim Committee itself were not behind the drops. Ralph Bard, the undersecretary of the navy, as well as Stimson, are examples of civilian leaders of the military having qualms about the bombs. Many seemed to share the opinion that “the Japanese war was really won before we ever used the atom bomb” (Bard).

However, in keeping with his job as President Truman’s advisor and secretary of war, Stimson made statements after the bombing that an invasion was “expected to cost over a million casualties to American forces alone” (Miles 121–140). Many historians today maintain that dropping the bomb did not save the lives that justified its use. Although the pressure to shelve the bomb was great, noting the moral injustice of dropping such weapons on cities, the geopolitical and diplomatic issues for the United States, and the obvious military ramifications dealing with communist Russia, the strong, patriotic, and logical argument of those advocating the use of the bomb seemed to outweigh any dissenters (Lanouette 266–267). The momentum that had been driving the United States through the war, bolstering the booming wartime economy and pushing the scientists to create the bomb, was a force that could hardly be harnessed and would be even more difficult to stop by merely showcasing the bomb (Alperovitz 656). The premise was simple: if Japan had not surrendered by now, it was clear it would need an inevitable defeat on the horizon to do so. Without imminent defeat in sight, the Japanese would fight a brutal battle for their homeland, one that would go on to the last man. However, some actually advocated an invasion because they firmly believed it would have been a very short time before Japan surrendered, and that our government knew that because we had broken the Japanese code (Zinn). The general idea of the outcome of the invasion, however, came from Japanese radio and newspapers that railed against the United States and rang out a call to arms to all Japanese—sentiments that did not bode well for a short American invasion (The Race to Build the Atomic Bomb).

Aside from resulting in the loss of countless American lives, this plan of action seemed foolish for the U.S., who would be stuck in a dead–end war while its competitors would surpass it economically and militarily. Clearly, to men like Byrnes and Groves, and most importantly, President Truman himself, this was an unacceptable and unwise course of action. To these men, the political and other issues took a back seat to saving American
lives. Many today consider this the correct choice between using the bomb and conducting a suicide invasion of Japan, but still others maintain that there were other options open to President Truman, and question why he seemed to ignore and even avoid them. Whether those alternatives would have truly worked is a hypothesis based on conjectures and assumptions; what historians have is Truman’s mindset and his consequent decision. With that knowledge, some have even gone as far as to label Truman as an evil–minded war criminal, while others blame the misperceptions and intragovernmental propaganda for affecting his decision. Those who agree with Truman’s decision view him as a strong–minded patriot; critics as a man ignorant to the “real human consequences of the use of unchecked disproportionate power…” (Williamson). Regardless of Truman’s character, the bombs were dropped, historically defended by the saving of American lives and as retribution for the attack on Pearl Harbor. The world would never be the same.

With the dropping of the bombs came the expected immediate reactions, including surrender from the Japanese and complete shock throughout the rest of the world; additionally came the more far–reaching reaction of the beginning of the arms race with the Soviet Union and the Cold War. In fact, almost immediately after the bombs were dropped in 1945, Russia and the U.S. entered into the predicted arms race. Russia detonated its first atomic bomb in 1949, a copy of the Fat Man bomb called Joe 1, in Kazakhstan. Simultaneously, debates in the U.S. arose over building a hydrogen bomb and other, more powerful bombs believed possible. The first hydrogen bomb, Bravo, was completed and tested by the U.S. in 1954, with Russia following close behind, exploding the world’s largest nuclear bomb in 1961. Only a year later the world came terrifyingly close to a nuclear war as a result of the Cuban Missile Crisis between Russia and the U.S. (Timeline 1960). International and submarine–launched ballistic missiles were soon introduced, followed by the signing of the Anti–Ballistic Missile (ABM) treaty and the Strategic Arms Limitation Treaty (SALT) in Moscow in 1972. In 1977, the United States tested a neutron bomb, or enhanced–radiation weapon, which was designed to cause immense and lethal radiation damage. It was not further developed because of the severity of its effects (Timeline 1970). By 1988 the U.S. and the Soviet Union signed the Agreement on Notification of Missile Launches, and the Strategic Arms Reduction Treaty (START) (Atomic Archive). With the fall of the Soviet Union in the early 90s the Cold War was coming to a halt, but nuclear weapons were possessed by almost all major powers in the world—all a product of the scientific developments and eventual detonation of the Manhattan Project’s two atomic bombs on Japan decades earlier.

Tied into these concrete examples of the effects of the Project, there was a much more abstract force at work in shaping the bombs’ effect on the future. Since the beginning of the arms race, past the end of the Cold War and up to the present, nuclear weapons have been steadily becoming a reality for many nations. Although the Nuclear Non–Proliferation Treaty of 1968 currently has 189 states signed on, the world still deals with issues surrounding nuclear weapons as new nations attain nuclear power. North Korea, for instance, tested its first bomb in 2006, and nations such as Iraq, Pakistan, and Israel have caused political strain over their nuclear weapons policies (Du Preez). Similarly, Iran has been battling the International Atomic Energy Agency to expand its uranium enrichment under auspices of a civilian nuclear energy program. Because of these developments, international policy is in a constant state of flux. In this time of uncertainty, it is important that the world remember the original atomic bombings and the history behind them. Looking back into American history, we see the men who toiled for hours under the Manhattan Project, the brave soldiers who died on the battlefield, and the men who influenced decisions during World War II.
This may lead us to jump to conclusions about our nation’s use of the atomic bomb, but the problem of the bomb goes far deeper than U.S. history, for the greater issue breaks free of American history into the history of humanity itself. Broadening our perspective, then, we must look at the men who died fighting for nations that were not our own, and we must share the horror of those who witnessed the bombings of Hiroshima and Nagasaki. The scars created on those days still burn in the hearts of citizens of nations around the world. While it may seem easy to look back on the use of the atomic bomb as just another day in history, the lasting effects of this action cannot be ignored. What was our goal in dropping the bomb? Above all else, America was striving for peace. We were searching for an end to a war that seemingly had no end in sight. We wanted to finally be able to put our minds to rest. However noble our intentions, what did this action bring? Instead of peace of mind, it brought a lasting and biting fear. It began a new kind of war, one that could not be followed battle by battle, one that, seemingly, could never be won or lost. This Cold War would leave the world fearing its own destruction could come on any given day, at the simple click of a button, and that fear would extend even past the end of the Cold War. So, in this light, can one truly look at an atomic weapon as a source of military defense? Indeed, the broad scale of change and long–lasting effect of only one instance of use proves otherwise.

Today there is rumor of nuclear proliferation across the globe and with each new nation that obtains a nuclear weapon the worry of the world increases tenfold. Above self–defense and global recognition stands the altar of the general good. Let us again look at our objectives, a world where nuclear power is a daily threat is a world where peace of mind cannot exist. We are not a nation that advocates destruction. We are not a people who will sit by as we watch our world crumble. We should not be a people, then, who allow our world to be torn apart at the seams by the pull of nuclear threats. We must realize the need for a limiting of nuclear power that allows no nation to push its own motives over the general good. We must not forget the cataclysmic events of our past. This is the road to safety. This is the road to a future where the world will not have to live in fear. This is the road to peace, and we must follow it without faltering, for in peace lies hope, and without hope, the future may never come to pass.

In retrospect, The Manhattan Project was one of the most significant—and secret—projects ever undertaken, shaping the future of the world in a way far beyond what its creators could have imagined, stirring moral debates on the controversial conditions of Japan’s surrender, and creating both short– and long–term effects in military conditions which put the United States in a deadlock with the Soviets up to and through the end of the Cold War. Through intense domestic and international secrecy surrounding the Project, the United States was able to create and detonate the most devastating weapon then known to man. However, the most important lesson learned from the bomb cannot be expressed in a scientific formula. It is a harsh reality, yet a simple idea, that the entire world could potentially be destroyed by the flip of a switch. True, a world war was ended with the dropping of the bombs, arguably saving hundreds of thousands of lives, but the same event marked the beginning of the production of untold numbers of arms and weapons. Perhaps the real lesson to be learned is where science and ethics meet. While ideally science should pursue knowledge, there is a point where knowledge becomes dangerous, and, given its danger, should be checked. This paper cannot explore the extensive limits of science or the ethics of the bomb; suffice it to say that we can never know if fewer lives were saved with the dropping of the bombs, but we must do everything in our power to stop such a loss of life from happening again.
Works Cited


Einstein, Albert. Letter to President Roosevelt. 2 Aug. 1939.


Kirkpatrick, Elmer E. “Intelligence Division at Oak Ridge.” Memo to Gen. Leslie Groves. 15 Dec. 1944.


“Safeguarding Mil Info Regulations.” Memo to Chief MIS. Manhattan District, Intell Bull 5, Safeguarding Mil Info Regs, 27 Nov. 43 (revised 1 Sept. 44), Sec. 3, reproduced in MDH, Bk. 1, Vol. 14, App. B7, DASA.


Stimson, Henry L. Letter to President Truman. President’s Secretary’s File. Truman Papers. 11 Sept. 1945.


U.S. National Archives, Record Group 77, Records of the Office of the Chief of Engineers, Manhattan Engineer District, Harrison–Bundy File, folder #76.

U.S. National Archives, Record Group 77, Records of the Office of the Chief of Engineers, Manhattan Engineer District, Harrison–Bundy File, Folder #78.

U.S. National Archives, Record Group 77, Records of the Office of the Chief of Engineers, Manhattan Engineer District, Harrison–Bundy File, Folder #76 (cover page).


“Interim Committee, International Control.”


Works Consulted


“Interim Committee, International Control.”

U.S. National Archives, Record Group 77, Records of the Office of the Chief of Engineers, Manhattan Engineer District, Harrison–Bundy File, folder #77, “Interim Committee, International Control.”

U.S. National Archives, Record Group 77, Records of the Office of the Chief of Engineers, Manhattan Engineer District, TS Manhattan Project File ‘42–’46, folder SD Selection of Targets, 2 Notes on Target Committee Meetings.


Works Consulted


“Interim Committee, International Control.”

U.S. National Archives, Record Group 77, Records of the Office of the Chief of Engineers, Manhattan Engineer District, Harrison–Bundy File, folder #76 (cover page).


U.S. National Archives, Record Group 77, Records of the Office of the Chief of Engineers, Manhattan Engineer District, TS Manhattan Project File ‘42–’46, folder SD Selection of Targets, 2 Notes on Target Committee Meetings.


Works Consulted


“Interim Committee, International Control.”

U.S. National Archives, Record Group 77, Records of the Office of the Chief of Engineers, Manhattan Engineer District, Harrison–Bundy File, folder #76 (cover page).


U.S. National Archives, Record Group 77, Records of the Office of the Chief of Engineers, Manhattan Engineer District, TS Manhattan Project File ‘42–’46, folder SD Selection of Targets, 2 Notes on Target Committee Meetings.
