Practical Applications of Ontologies in Clinical Systems

Roberto A. Rocha, MD, PhD, FACMI
Sr. Corporate Manager
Clinical Knowledge Management and Decision Support,
Clinical Informatics Research and Development, Partners Healthcare System
Lecturer in Medicine
Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School

International Conference on Biomedical Ontology
July 28-30, 2011
Buffalo, New York, USA
Overview

• Background
 – Clinical System
 – Clinical Ontologies (disclaimer)

• Practical applications
 – Real-life examples from Partners
 – Local curation and management

• Next generation of clinical systems
 – Meaningful use, collaborative care
 – Continuous learning

• Conclusions
Background

Clinical System

Clinical Ontologies (disclaimer)
Clinical System

• “... an automated system with a long term database containing clinical information used for patient care.”

 – Bruce Blum, 1986

• Support (automation) for one or multiple clinical (patient care) functions

• Electronic Health Record system is an integrated suite of clinical systems
Outpatient EHR @ Partners

Document, ordering, results review, messaging, etc.
Clinical Ontologies

• “... a loose definition of Clinical Ontology, which also includes well-organized, but not always formally represented, clinical classifications, nomenclatures and terminologies.”

• “Clinical Ontologies represent clinical phenotypes, diseases, syndromes and many other clinical elements such as medications and personal habits ...”

SNOMED CT

- Systematized Nomenclature of Medicine – Clinical Terms
- Organization: International Health Terminology Standards Development Organisation (IHTSDO)
 - SNOMED Terminology Solutions - College of American Pathologists
- Purpose: Encoding of multiple clinical domains
- Content: Comprehensive (diseases, signs, symptoms, living organisms, chemicals, body parts, morphology, occupations, modifiers, etc.)
- Information:
 - http://www.ihtsdo.org/
CliniClue Xplore

http://www.clininfo.co.uk/clinicue_xplore/concepts/browserLayoutBrowser.html
• Logical Observation Identifiers Names and Codes
• Organization: LOINC Committee
• Purpose: identification of laboratory and clinical observations (HL7 messages)
• Content: laboratory tests, clinical measurements, documents, etc.
• Information:
 – http://loinc.org/
<table>
<thead>
<tr>
<th>Score</th>
<th>LOINC</th>
<th>Component</th>
<th>Property</th>
<th>Timing</th>
<th>System</th>
<th>Scale</th>
<th>Method</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.99</td>
<td>56070-6</td>
<td>Age at body weight: max</td>
<td>Time</td>
<td>Pt</td>
<td>^Patient</td>
<td>Qn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.81</td>
<td>41982-0</td>
<td>Body fat percentage</td>
<td>MFr</td>
<td>Pt</td>
<td>^Patient</td>
<td>Qn</td>
<td>Measured</td>
<td>%</td>
</tr>
<tr>
<td>21.06</td>
<td>8308-9</td>
<td>Body height: standing</td>
<td>Len</td>
<td>Pt</td>
<td>^Patient</td>
<td>Qn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.81</td>
<td>38156-5</td>
<td>Body mass index</td>
<td>Ratio</td>
<td>Pt</td>
<td>^Patient</td>
<td>Qn</td>
<td></td>
<td>kg/m²</td>
</tr>
<tr>
<td>15.81</td>
<td>59574-4</td>
<td>Body mass index</td>
<td>Prctl</td>
<td>Pt</td>
<td>^Patient</td>
<td>Qn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.81</td>
<td>59575-1</td>
<td>Body mass index</td>
<td>Prctl</td>
<td>Pt</td>
<td>^Patient</td>
<td>Qn</td>
<td>Per age</td>
<td></td>
</tr>
<tr>
<td>15.81</td>
<td>59576-9</td>
<td>Body mass index</td>
<td>Prctl</td>
<td>Pt</td>
<td>^Patient</td>
<td>Qn</td>
<td>Per age and gender</td>
<td></td>
</tr>
<tr>
<td>22.94</td>
<td>11727-5</td>
<td>Body weight</td>
<td>Mass</td>
<td>Pt</td>
<td>^Fetus</td>
<td>Qn</td>
<td>US.estimated from AC</td>
<td>g</td>
</tr>
<tr>
<td>22.94</td>
<td>11728-3</td>
<td>Body weight</td>
<td>Mass</td>
<td>Pt</td>
<td>^Fetus</td>
<td>Qn</td>
<td>US.estimated from AC</td>
<td>g</td>
</tr>
<tr>
<td>22.94</td>
<td>11729-1</td>
<td>Body weight</td>
<td>Mass</td>
<td>Pt</td>
<td>^Fetus</td>
<td>Qn</td>
<td>US.estimated from AC</td>
<td>g</td>
</tr>
<tr>
<td>22.94</td>
<td>11730-9</td>
<td>Body weight</td>
<td>Mass</td>
<td>Pt</td>
<td>^Fetus</td>
<td>Qn</td>
<td>US.estimated from AC</td>
<td>g</td>
</tr>
<tr>
<td>22.94</td>
<td>11731-7</td>
<td>Body weight</td>
<td>Mass</td>
<td>Pt</td>
<td>^Fetus</td>
<td>Qn</td>
<td>US.estimated from AC</td>
<td>g</td>
</tr>
</tbody>
</table>
Many others (incomplete list)

- **RxNorm**: clinical drugs and drug delivery devices (NLM)
- **ICNP**: International Classification For Nursing Practice (ICN)
- **NDF-RT**: National Drug File - Reference Terminology (VA)
- **CVX**: Vaccines Administered (CDC)
- **ICD-9-CM, ICD-10-CM/ICD-10-PCS**: International Classification of Diseases
- **CPT-4**: Current Procedural Terminology (AMA)
- **HL7 Vocabulary domains** (messaging, documents, services)
Practical applications

Examples from Partners HealthCare:
(1) Problem Lists; (2) Bedside Documentation

Local curation and management
1st Example: Problem List

- Management of **patient-specific problems** (as a list):
 - All active (and inactive) problems associated with a patient
 - Detailed “provenance” (source, onset, changes, status, etc.)
 - Associate problems with encounters, orders, medications, notes, etc.
 - Order (filter) the problem list

- Problems correspond to chronic conditions, diagnoses, symptoms, functional limitations, and visit-specific conditions
 - Managed over time (e.g., single visit, life of a patient)
 - Documentation of historical information
 - Tracking the changing character of problems and their priority

- **Multiple disciplines** can contribute to the problem list

Adapted from HL7 Electronic Health Record - System Functional Model, Release 1 February 2007; Chapter Three: Direct Care Functions.
Problem List @ Partners (1)

<table>
<thead>
<tr>
<th>Problem Description</th>
<th>Additional Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression</td>
<td>Type: Acute Severity: Major Condition: Worse. Comments: no changes pt still depressed…</td>
</tr>
<tr>
<td>Brain cancer</td>
<td>Comments: inoperable</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Onset: 04/04/2011 Comments: must reduce their stress an… Type: Chronic Onset: 11/30/2007</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Type: Acute Onset: 09/11/2001 Comments: updating a problem that was… Type: Acute Severity: Minor Condition: Unchanged Location: Right Onset: 03/02/2011 Comments: hurts</td>
</tr>
<tr>
<td>R/O Depression</td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td>Type: Acute Onset: 09/11/2001 Comments: updating a problem that was… Type: Acute Severity: Minor Condition: Unchanged Location: Right Onset: 03/02/2011 Comments: hurts</td>
</tr>
<tr>
<td>PR Foot pain</td>
<td></td>
</tr>
<tr>
<td>FH Dyspnea</td>
<td></td>
</tr>
<tr>
<td>H/O Bulimia nervosa</td>
<td></td>
</tr>
<tr>
<td>H/O Verruca plantaris</td>
<td></td>
</tr>
<tr>
<td>Glaucoma</td>
<td>Onset: 04/05/2011</td>
</tr>
<tr>
<td>RSK Melanocytic nevus of skin</td>
<td>Onset: 06/15/2011</td>
</tr>
<tr>
<td>RSK Arteriosclerotic vascular disease</td>
<td></td>
</tr>
</tbody>
</table>
Problem List @ Partners (2)

1. Problem: pain

2. Favorites: Term
 - H/O ankle pain
 - Results: Term
 - Pain
 - Abdominal pain
 - Knee pain
 - Chest pain
 - Neck pain
 - Shoulder pain
 - Joint pain
 - Foot pain
 - Ankle pain
 - Muscle pain
 - Flank pain
 - Musculoskeletal pain
 - Hip pain

3. Problem: Chest pain
 - Modifier:
 - Type:
 - Severity:
 - Conditions:
 - Status:
 - Location:
 - Question of:
 - History of:
 - Probable:
 - Negative:
 - Risk of:
 - Rule out:
 - Negative History of:

 Onset Date: T 4/12/13 Resolution Date: T 4/12/13

Add to Favorites for: My List Practice
Problem List @ Partners (3)

1. Problem: ketogenic

2. No Match Found. Take as typed or choose another Problem. ketogenic [Uncoded problem - will NOT be used for clinical decision support]

3. Problem Description: Ketogenic [uncoded]
Problem list concepts @ Partners

- **Initial phase (+1,200 terms)**
 - Controlled (limited) list of terms developed by Partners
 - Physician-centered
 - Limited synonyms; no classification or editorial policy

- **Current phase (+1,600 concepts)**
 - Terms have been mapped to **SNOMED CT** concepts
 - Additional synonyms
 - Concepts manually aggregated into reusable clinical states (classification subsets)
 - Evolving editorial policy (concept granularity)

- **Ongoing expansion – multidisciplinary**
 (currently +3,500 concepts)
Adoption of SNOMED CT

• Local terms were manually mapped to SNOMED CT
 – Based on the “VA/KP Problem Lists subset”
 ▪ Almost all successfully mapped – few ‘local’ concepts remain
 – Local identifiers were preserved for backwards compatibility
 – Ongoing maintenance with semi-annual SNOMED updates
 – Extensive use of the SNOMED hierarchies to create classification subsets used in decision support rules
Examples of Problem concepts

- Chronic Renal Dysfunction
 - Chronic renal failure syndrome
- Nephropathy
 - Kidney disease
- Cardiac bypass graft surgery
 - Coronary artery bypass graft
- Coronary artery disease
 - Coronary arteriosclerosis
- Diabetes mellitus
 - Diabetes mellitus
- Diabetes of pregnancy
 - Gestational diabetes mellitus
- G6PD deficiency
 - Deficiency of glucose-6-phosphate dehydrogenase
- Low platelets
 - Thrombocytopenic disorder
- Bright red blood per rectum
 - Hematochezia
- Lower GI bleeding
 - Lower gastrointestinal hemorrhage
- Unspecified GI bleed
 - Gastrointestinal hemorrhage
- Hypotension
 - Low blood pressure
- Peptic ulcer disease
 - Peptic ulcer
- Angioplasty
 - Percutaneous transluminal coronary angioplasty
- Pregnancy
 - Patient currently pregnant
- Unwanted fertility
 - Unplanned pregnancy
Classification subsets

- Grouping and filtering concepts (not in use)
 - User-interface, reporting and analytics

- Clinical **decision support rules**
 - Enable simple inferences that decrease the complexity of rules (maintenance)

- **Difficult** to create and maintain without more formal semantic representation
 - SNOMED hierarchies provide a starting point
 - Frequently require validation (local relevance)

- Ideally maintained at a national (international) level to ensure **shared understanding**
 - Collaborative development and maintenance
Management of subsets @ Partners
Management of subsets @ Partners
Benefits of SNOMED CT

- Detailed representation of clinical problems
 - **Consistent** set of concepts (enterprise view)
 - **Compositional** and fine-grained
- Broad **coverage** of clinical domains
- Improved term search (hierarchical views)
- Rich set of **relationships**: inference
- Active **maintenance** by international organization
- Mappings to billing classifications (ICD-9/10)
Implementation challenges

• Difficult reconciliation with pre-existing terms
 – Local ambiguity, redundancy, length restrictions
• Legacy codes ‘hard-coded’ into applications and decision support rules
 – Recently able to discontinue the generation of legacy identifiers
• SNOMED limitations
 – Terms are frequently not clinician-friendly
 – Inconsistencies caused by conflicting intents (over time)
 – Ongoing changes compromise stability (early adoption)
 – Lack of reference implementations (best practices)
Capturing relevant clinical details

- **Problem concept**
 - [Location]
 - Body site, Laterality, ...
 - [Etiology]
 - [Severity]
 - [Chronicity]
 - [...]
 - [Modifiers]
 - History of, Family History of, Probable, Risk of, Rule out, Question of, Status Post, Negative Family History, ...

- **What is displayed** to the clinician (or patient)?
 - Simple keyword search that returns a list to terms
 - Form with multiple fields (multiple searches)

- **What is stored** in the patient problem list?
 - Single code representing a pre-coordinated concept
 - Multiple codes representing a concept expression

- **Current limitations:**
 - Clinical systems (free text?)
 - Clinical ontologies
Problem List information models

Alignment of Clinical Ontologies with models used by Clinical Systems is critical!
2nd Example: Bedside documentation

- Documentation of Care, Measurements and Results
 - Manage clinical **measurements**: document and annotate measurements of physiologic parameters and clinical conditions (e.g., vital signs, height, weight, I&O, pain severity, size of wound, etc.)
 - Manage clinical **documents** and **notes**: create, modify, and sign **unstructured** (narrative) and **structured** (templates with coded fields) documents and notes, including details about exams and procedures, assessments, and patient-specific care plans and instructions
 - **Medication** administration: list of medications (including vaccines) to be administered and administration details
 - Manage **results**: review, annotate, and communicate test results from ancillary departments or performed at the bedside

- **Multiple disciplines** contribute to bedside documentation
 - Large variety of clinical details typically represented in **narrative form**

Adapted from HL7 Electronic Health Record - System Functional Model, Release 1 February 2007; Chapter Three: Direct Care Functions.
Bedside documentation @ Partners

Initial Nursing Assessment

- **Patient Profile**
 - Information source: Son-Michael
 - Preferred language: Spanish
 - Preferred name: Steven

- **Cognitive/Perceptual**
 - Sensory aides: Contact lenses, Eye glasses, Hearing aids
 - Other: Phone amplifier

- **Memory deficit**
 - Appointments, Completing tasks, Dates, Directions, Medication, Times

- **Orient to room**

- **Interpreter source**
 - Hospital interpreter
 - Telephonic service

- **Other**
 - Any additional information

Note:

- **Show sessions log**
- **Include error sessions**

- **Date and Time:** 07/19/2011 11:22 AM (Saved at: 07/19/2011 11:40 AM) by [User Name]
Bedside documentation process

- **Concurrent** authoring for multiple disciplines
 - Overlap? Multiple ways to capture the same data?

- **Multiple restrictions** imposed by the documentation system
 - Very limited support for synonyms and reference clinical ontologies
 - Prevalence of pre-coordinated concepts (clinician-friendly)
 - Underlying information models not explicitly defined (no reuse)
 - Relations between data elements exist within data entry template (UI)
 - Context largely defined by data entry template (UI)

- Lack of **reference models** to inform what should be captured in coded format
 - Significant portions captured as free text within discrete fields
 - Compromises reporting and computerized decision support

- Alignment with reference standards **after** content is defined
 - Limited expertise to search and use reference clinical ontologies
Content definition

• Iteratively define content with stakeholders
 – Start with existing paper & electronic forms
 – Define what will be documented and how, including:
 ▪ Coded elements and their respective values
 ▪ Formulas and calculations
 ▪ Sequencing and disposition of elements
 ▪ Required vs. optional elements
 – *(Crosswalk with previously defined content - as needed)*
 – Iterate until reach consensus
Examples of Documentation concepts

- Easy Bruising
- Change in appetite
- Difficulty in Walking
- Heart Murmur
- Hearing Loss
- Ambulating
- Depressed
- Constipation
- Stool Consistency

- Reflexes: Babinski, right
- Motor strength: elbow extension, right
- Nephrostomy tube (right) insertion site
- Head of bed elevation
- Polyuria or polydipsia
- Rash/pruritus
- Redness
- Tolerating orals

Data types: true/false, free text, numeric, enumerated, etc.
Content modeling

- Extract **data elements & data values** from approved content
 - Name data elements using defined naming conventions
 - Preserve clinician-friendly labels
 - Classify data elements using defined categories (strict assignments)
 - **Index** (tag) data elements using applicable reference clinical ontologies: SNOMED, LOINC, ICNP, ... (enable subsequent retrieval)
 - **Map** coded data values to applicable reference clinical ontologies
 - *(Additional crosswalk with previously defined data elements – as needed)*
 - Iterate until all data elements and values are properly defined

- Update (import) data elements within documentation system
 - Current phase of content development: **+6,500 data elements**
Birth Weight: `<number><units>`

LOINC
8339-4: Body weight at birth
Mass; Pt; Patient; Qn; Measured

Data Element: numeric measurement with unit

Topic

Value set

SNOMED CT (or UCUM)
258681007: Units of mass (SI)

Value (concept)

SNOMED CT
258682000: gram, g

Linking to reference clinical ontologies
Indexing & Mapping sources

• LOINC
 – Data elements (1st choice)
 – Documents and notes (1st choice)

• SNOMED CT
 – Data values (1st choice)
 – Data elements (2nd choice)

• ICNP
 – Nursing problems, outcomes, interventions

• Others (Nutrition)
Benefits of Indexing and Mappings

• Availability of structured and coded data
 – Consistency across sites and disciplines
 – Identify (prevent) data redundancy (streamline workflow)
 – External confirmation that data content is relevant
 – Simplify data reporting (across clinical systems)
 – Enables advanced computerized decision support
 – Quality of the resulting clinical data (analysis & research)

• Compliance with efforts to promote interoperability
 – Data exchange and reporting
 – Import (adopt) templates and forms developed by others

• Contribute to the development and improvement of existing clinical ontologies
Terminology teams @ Partners

• Terminology engineers (4.0 FTE)
• Clinical Informaticians (2.6 FTE)
• Subject Matter Experts (domain specific)

• Software engineers (3.0 FTE)
• Project Manager (1.5 FTE)
Clinical Ontologies: advantages (1)

- Provide guidance (basis) for:
 - Concepts
 - Synonyms & Codes (‘Designations’)
 - Hierarchies & Classes
 - Mappings & Decompositions
 - Translations to other languages

- Required platform for data & knowledge interoperability
Clinical Ontologies: advantages (2)

- Contribute computable underpinnings for content **maintenance**
 - Advanced inference leveraging logic-based knowledge (e.g., SNOMED CT)

- Reduce local maintenance burden
 - Assuming **compatible** rate of change
Clinical Ontologies: limitations

• Must support local **customizations**
 – Concepts, designations, additional relationships

• Must accommodate **changes**
 – Reconcile concepts added locally with eventual availability in reference clinical ontologies
 – Reference clinical ontologies might evolve at incompatible speeds (too fast/slow)

• Must support concepts composed from **different sources**
 – Most clinical systems require concurrent/integrated use of multiple reference clinical ontologies
Core Principle @ Partners

• All reference clinical ontologies (e.g., LOINC, SNOMED, FDB, RxNorm, etc.) will be used by clinical systems through local Partners concepts
 – Concepts used by clinical systems and knowledge content are always local Partners concepts
 – Local concepts can be mapped to reference concepts in clinical ontologies
Core Principle: Motivation

- Local concepts will be created for all domains
 - Overcome **content coverage limitations** of clinical ontologies
 - Support research activities that require highly specialized content
 - Commitment to **submit** local extensions to organizations maintaining the reference clinical ontologies

- Local concepts will be **customized** as needed
 - Including ‘granularity’, designations, and associations
 - Consistent metadata and lifecycle management (unified *metamodel*)

- Local concepts will have stable **identifiers**
 - Internally defined and long-lived
 - Appropriate versioning and mappings to/from reference concepts

- Mappings to external concepts will occur as needed (**parsimonious**)
 - Enable resolution of overlapping content from different clinical ontologies

- Curation will follow KM lifecycle and collaboration best practices
Core Principle: Challenges

• Local and reference concepts must be complementary
 – Adopt semantic technologies for effective maintenance and inference
 – Manage local extensions, restrictions, and replacements (overrides)
 – No intent to replicate all reference designations and associations

• Adoption of compositional identifiers
 – Support for versioning and namespaces
 – Consistent with other knowledge assets (e.g., models, templates, rules, etc.)

• Mechanism to identify specific designations and associations
 – Proper support for classification (grouping) and contextual constraints

• Long-term stability and overall consistency outweigh maintenance
 – Recognize that local ontology maintenance ‘never ends’
 – Knowledge maintenance and software maintenance will be streamlined, while enabling interoperability and extensibility (innovation)
Next generation of clinical systems

Meaningful use

“Medical Home”

Continuous learning
Meaningful use of EHRs

- Universal use of EHRs by 2014
- Transformation of the healthcare system – improvements to outcomes and efficiency
- Requires “meaningful use” of EHRs, not just installation of the software
 - Incentive payments totaling up to $27 billion over 10 years
 - As much as $44,000 (through Medicare) and $63,750 (through Medicaid) per clinician
 - Incentives encourage early adoption; no incentives after 2014; Penalties begin in 2015

Meaningful use components

- Use of a certified EHR in a **meaningful manner**, such as e-prescribing
- Use of certified EHR technology for **electronic exchange of health information** to improve quality of health care
- Use of certified EHR technology to submit **clinical quality** and other measures

https://www.cms.gov/EHRIncentivePrograms/30_Meaningful_Use.asp
MU Stage 1 and Clinical Ontologies

- Problems: ICD-9-CM or SNOMED CT
- Procedures: ICD-9-CM (volume 3), Health Care Financing Administration Common Procedure Coding System (HCPCS), CPT-4
- Laboratory test results: LOINC
- Medications: RxNorm, or any source vocabulary that is included in RxNorm
- Immunizations: CVX
- Race and Ethnicity: OMB Directive No. 15
- HL7 Continuity of Care Document (CCD) & Messages
Meaningful Use stages

More sophisticated clinical systems, requiring an ever increasing variety (and amount) of structured and coded data

https://www.cms.gov/EHRIncentivePrograms
Patient-centered medical homes

• “… highly integrated, team-based practices that promote patient centered care through routine patient feedback and better access … also promote improved clinical quality and efficiency through increased care coordination.”

• Critical improvements in EHRs:
 – Clinical decision support, registries, team care, care transitions, personal health records, telehealth technologies, and measurement

• Information exchange with integration of inpatient and outpatient EHRs

• More data on the aggregate and individual patient/provider level

By 2020, ninety percent of clinical decisions will be supported by accurate, timely, and up-to-date clinical information, and will reflect the best available evidence and informed personal preference.
Conclusions

Challenges & Opportunities
Opportunities

• Government providing exceptional incentives for Healthcare IT adoption
 – IT identified as a key enabler of a more effective healthcare system

• Proposed healthcare delivery models require high levels of integration within and across institutions
 – Moving towards seamless collaboration where patients are active contributors

• Opportunity for a new generation of clinical systems beyond efficient record storage and communication
 – New paradigm with pervasive computerized data analysis and decision support
 – Widespread use of interoperable services and data, with advanced functions that enable team-based care
Challenges

• Cost-effective **semantic interoperability**
 – Existing standards make data exchange possible, but not simple or efficient (projects take months or years)
 – Data exchanged in a structured and coded format still represents a small portion of the electronic record

• Clinical systems that can seamlessly represent and process a **complete electronic patient care record**
 – Current systems frequently rely on legacy data architectures that limit the use of clinical ontologies
 – Slow adoption of technologies that can help overcome the current data representation limitations

• Clinical ontologies with proper **domain coverage** and **extensibility**
 – Existing methods and tools to use clinical ontologies are not accessible to typical clinicians
Acknowledgements

Blackford Middleton
Tonya Hongsermeier
Howard Goldberg
Beatriz Rocha
KM Team (terminology) @ Partners

Stanley Huff (Intermountain, U of Utah)
Terminology Team @ Intermountain
Thank you!

Roberto A. Rocha, MD, PhD
rarocha@partners.org