The Chow ring of hyperkähler manifolds

Arnaud Beauville

Université de Nice

Miami, January 2016
The Chow ring

A complex projective manifold X corresponds to a graded ring $CH^*(X)$, analogous to the cohomology ring, with a purely algebraic definition:

$X \leadsto \text{graded ring } CH^*(X)$,
The Chow ring

X complex projective manifold \leadsto graded ring $CH^\bullet(X)$, analogous to cohomology ring, with a purely algebraic definition:

$$CH^p(X) = \{n_1 Z_1 + \ldots + n_k Z_k\}/\sim \quad CH_p := CH^{n-p}$$

Z_i irreducible of codimension p, $\sim =$ rational equivalence (generalizes linear equivalence of divisors).
The Chow ring

X complex projective manifold \leadsto graded ring $CH^\bullet(X)$, analogous to cohomology ring, with a purely algebraic definition:

$$CH^p(X) = \{n_1 Z_1 + \ldots + n_k Z_k\}/ \sim \quad CH_p := CH^{n-p}$$

Z_i irreducible of codimension p, $\sim = $ rational equivalence (generalizes linear equivalence of divisors).

Product given by intersection.
The Chow ring

X complex projective manifold \rightsquigarrow graded ring $CH^*(X)$, analogous to cohomology ring, with a purely algebraic definition:

$$CH^p(X) = \{n_1Z_1 + \ldots + n_kZ_k\}/ \sim \quad CH_p := CH^{n-p}$$

Z_i irreducible of codimension p, \sim = rational equivalence (generalizes linear equivalence of divisors).

Product given by intersection.

$$CH^0(X) = \mathbb{Z}, \quad CH^1(X) = \text{Pic}(X), \quad CH^2(X) = ???$$
The Chow ring

X complex projective manifold \rightsquigarrow graded ring $CH^\bullet(X)$, analogous to cohomology ring, with a purely algebraic definition:

$$CH^p(X) = \{n_1Z_1 + \ldots + n_kZ_k\}/\sim \quad CH_p := CH^{n-p}$$

Z_i irreducible of codimension p, $\sim =$ rational equivalence (generalizes linear equivalence of divisors).

Product given by intersection.

$CH^0(X) = \mathbb{Z}, \quad CH^1(X) = \text{Pic}(X), \quad CH^2(X) = ???$

Unlike cohomology, the Chow ring is poorly understood.
The Chow ring

X complex projective manifold \leadsto graded ring $CH^\bullet(X)$, analogous to cohomology ring, with a purely algebraic definition:

$$CH^p(X) = \{n_1Z_1 + \ldots + n_kZ_k\}/\sim \quad CH_p := CH^{n-p}$$

Z_i irreducible of codimension p, \sim = rational equivalence (generalizes linear equivalence of divisors).

Product given by intersection.

$CH^0(X) = \mathbb{Z}$, $CH^1(X) = \text{Pic}(X)$, $CH^2(X) = ???$

Unlike cohomology, the Chow ring is poorly understood.

It is usually very large: if X has a nontrivial holomorphic form, $CH_0(X)$ cannot be parametrized by an algebraic variety (Roitman).
The Chow ring of K3 surfaces

\[S = \text{projective K3 surface (e.g. } S_4 \subset \mathbb{P}^3) \text{.} \]
$S =$ projective K3 surface (e.g. $S_4 \subset \mathbb{P}^3$).

$\text{Pic}(S) \cong \mathbb{Z}^\rho$, $1 \leq \rho \leq 20$ ("Picard number");
S = projective K3 surface (e.g. $S_4 \subset \mathbb{P}^3$).

$\text{Pic}(S) \cong \mathbb{Z}^\rho$, $1 \leq \rho \leq 20$ ("Picard number"); $CH_0(S)$ very large.
The Chow ring of K3 surfaces

$S = \text{projective K3 surface (e.g. } S_4 \subset \mathbb{P}^3\text{)}$.

$\text{Pic}(S) \cong \mathbb{Z}^\rho$, $1 \leq \rho \leq 20$ (“Picard number”); $CH_0(S)$ very large.

Theorem 1 (Voisin-AB, 2004)

1. All points of S lying on a rational (singular) curve have the same class c_S in $CH_0(S)$.
The Chow ring of K3 surfaces

$S = \text{projective K3 surface (e.g. } S_4 \subset \mathbb{P}^3 \text{).}$

$\text{Pic}(S) \cong \mathbb{Z}^\rho$, $1 \leq \rho \leq 20$ ("Picard number"); $CH_0(S)$ very large.

Theorem 1 (Voisin-AB, 2004)

1. All points of S lying on a rational (singular) curve have the same class c_S in $CH_0(S)$.

2. $\text{Pic}(S) \otimes \text{Pic}(S) \xrightarrow{\mu} \mathbb{Z} \cdot c_S \subset CH_0(S)$.
The Chow ring of K3 surfaces

S = projective K3 surface (e.g. $S_4 \subset \mathbb{P}^3$).

$\text{Pic}(S) \cong \mathbb{Z}^\rho$, $1 \leq \rho \leq 20$ ("Picard number"); $CH_0(S)$ very large.

Theorem 1 (Voisin-AB, 2004)

1. All points of S lying on a rational (singular) curve have the same class c_S in $CH_0(S)$.

2. $\text{Pic}(S) \otimes \text{Pic}(S) \xrightarrow{\mu} \mathbb{Z} \cdot c_S \subset CH_0(S)$.

3. $c_2(S) = 24c_S$.

Arnaud Beauville

The Chow ring of hyperkähler manifolds
The Chow ring of K3 surfaces

\(S = \text{projective K3 surface (e.g. } S_4 \subset \mathbb{P}^3) \).

\(\text{Pic}(S) \cong \mathbb{Z}^\rho, \; 1 \leq \rho \leq 20 \) (“Picard number”); \(CH_0(S) \) very large.

Theorem 1 (Voisin-AB, 2004)

1. All points of \(S \) lying on a rational (singular) curve have the same class \(c_S \) in \(CH_0(S) \).
2. \(\text{Pic}(S) \otimes \text{Pic}(S) \xrightarrow{\mu} \mathbb{Z} \cdot c_S \subset CH_0(S) \).
3. \(c_2(S) = 24c_S \).

Proof of 1 and 2: easy consequence of:

Theorem (Mumford-Bogomolov, Mori-Mukai)

Any curve \(C \subset S \) is linearly equivalent to a sum of rational curves.
The Chow ring of K3 surfaces

\(S = \) projective K3 surface (e.g. \(S_4 \subset \mathbb{P}^3 \)).

\(\text{Pic}(S) \cong \mathbb{Z}^\rho, 1 \leq \rho \leq 20 \) ("Picard number"); \(CH_0(S) \) very large.

Theorem 1 (Voisin-AB, 2004)

1. All points of \(S \) lying on a rational (singular) curve have the same class \(c_S \) in \(CH_0(S) \).

2. \(\text{Pic}(S) \otimes \text{Pic}(S) \xrightarrow{\mu} \mathbb{Z} \cdot c_S \subset CH_0(S) \).

3. \(c_2(S) = 24c_S \).

Proof of \(1 \) and \(2 \) : easy consequence of:

Theorem (Mumford-Bogomolov, Mori-Mukai)

Any curve \(C \subset S \) is linearly equivalent to a sum of rational curves.

(Intuitive reason: by Riemann-Roch, \(\dim |C| = g(C) \).)
Proof of ① and ②
Proof of ① and ②

$R \rightarrow H \text{ ample} \rightarrow R'$

$p \rightarrow p'$
Proof of ① and ②

\[R \quad \xrightarrow{H'} \quad R' \]

\[p \quad \xrightarrow{} \quad p' \]
Thus p and p' are linked by a chain of rational curves

\Rightarrow \([p] = [p']\) in \(CH_0(S)\).
Thus \(p \) and \(p' \) are linked by a chain of rational curves.

\[\Rightarrow \quad [p] = [p'] \text{ in } CH_0(S). \]

Proof of ②: \(C \cdot C' \sim \sum C \cdot R_i \sim \sum x_{ij} \) with \(x_{ij} \in R_i \).
is much more involved. We deduce it from the vanishing of the modified diagonal cycle in $CH_2(S \times S \times S)$ (choosing some $r \in R$):

$$\{(x, x, x)\} - \{(r, x, x)\} + \text{permutations} + \{(r, r, x)\} + \text{permutations}$$
is much more involved. We deduce it from the vanishing of the modified diagonal cycle in $CH_2(S \times S \times S)$ (choosing some $r \in R$):

$$\{(x, x, x)\} - \{(r, x, x)\} + \text{permutations} + \{(r, r, x)\} + \text{permutations}$$

This is proved by using the fact that S is covered by (singular) elliptic curves.
is much more involved. We deduce it from the vanishing of the *modified diagonal cycle* in $CH_2(S \times S \times S)$ (choosing some $r \in R$):

$\{(x, x, x)\} - (\{(r, x, x)\} + \text{permutations}) + (\{(r, r, x)\} + \text{permutations})$

This is proved by using the fact that S is covered by (singular) elliptic curves.

- The vanishing of the modified diagonal cycle has been studied recently by O’Grady, Voisin, Moonen-Yin, with interesting results and conjectures.
Remarks

③ is much more involved. We deduce it from the vanishing of the modified diagonal cycle in \(CH_2(S \times S \times S) \) (choosing some \(r \in R \)):

\[
\{(x, x, x)\} - \{(r, x, x)\} + \text{permutations} + \{(r, r, x)\} + \text{permutations}
\]

This is proved by using the fact that \(S \) is covered by (singular) elliptic curves.

The vanishing of the modified diagonal cycle has been studied recently by O’Grady, Voisin, Moonen-Yin, with interesting results and conjectures.

Theorem 1 is quite particular to K3 surfaces: O’Grady has examples of \(S_d \subset \mathbb{P}^3 \) with \(\text{rk}(\text{Im } \mu) \geq \left[\frac{d - 1}{3} \right] \).
A reformulation
Consider the graded ideal $CH^\bullet_{hom}(X)$ of $CH^\bullet(X)$:

$$0 \to CH^p_{hom}(X) \to CH^p(X) \to H^{2p}(X, \mathbb{Z})$$
Consider the graded ideal $CH^\bullet_{hom}(X)$ of $CH^\bullet(X)$:

$$0 \to CH^p_{hom}(X) \to CH^p(X) \to H^{2p}(X, \mathbb{Z})$$

\leadsto one-step filtration of $CH(X)$: $F^0 = CH(X), F^1 = CH(X)_{hom}$.
Consider the graded ideal $CH^\bullet_{hom}(X)$ of $CH^\bullet(X)$:

$$0 \to CH^p_{hom}(X) \to CH^p(X) \to H^{2p}(X, \mathbb{Z})$$

\rightsquigarrow one-step filtration of $CH(X)$: $F^0 = CH(X)$, $F^1 = CH(X)_{hom}$.

\(1\) and \(2\) \iff **Multiplicative splitting** of this filtration:
Consider the graded ideal $CH_{\text{hom}}^\bullet(X)$ of $CH^\bullet(X)$:

$$0 \to CH_{\text{hom}}^p(X) \to CH^p(X) \to H^{2p}(X, \mathbb{Z})$$

one-step filtration of $CH(X)$: $F^0 = CH(X)$, $F^1 = CH(X)_{\text{hom}}$.

1 and 2 \iff **Multiplicative splitting** of this filtration:

$$CH = CH_{(0)} \oplus CH_{\text{hom}}$$, $CH_{(0)}$ stable under multiplication.
Consider the graded ideal $CH^*_\text{hom}(X)$ of $CH^*(X)$:

$$0 \rightarrow CH^p_{\text{hom}}(X) \rightarrow CH^p(X) \rightarrow H^{2p}(X, \mathbb{Z})$$

one-step filtration of $CH(X)$: $F^0 = CH(X)$, $F^1 = CH(X)_{\text{hom}}$.

① and ② \iff **Multiplicative splitting** of this filtration:

$$CH = CH_{(0)} \oplus CH_{\text{hom}} \ , \ CH_{(0)} \text { stable under multiplication.}$$

For S K3:

$$CH^1(S) = \text{Pic}(S) \oplus (0)$$

$$CH^2(S) = \mathbb{Z} \cdot c_S \oplus CH^2(S)_{\text{hom}}$$
Consider the graded ideal $\text{CH}^\bullet_{\text{hom}}(X)$ of $\text{CH}^\bullet(X)$:

$$0 \rightarrow \text{CH}^p_{\text{hom}}(X) \rightarrow \text{CH}^p(X) \rightarrow H^{2p}(X, \mathbb{Z})$$

~~→ one-step filtration of $\text{CH}(X)$: $F^0 = \text{CH}(X)$, $F^1 = \text{CH}(X)_{\text{hom}}$.

① and ② \iff **Multiplicative splitting** of this filtration:

$$\text{CH} = \text{CH}(0) \oplus \text{CH}_{\text{hom}}$$, $\text{CH}(0)$ stable under multiplication.

For S K3:

$$\text{CH}^1(S) = \text{Pic}(S) \oplus (0)$$

$$\text{CH}^2(S) = \mathbb{Z} \cdot c_S \oplus \text{CH}^2(S)_{\text{hom}}$$

Question: For which other varieties do we have such a splitting?
Abelian varieties
Abelian varieties

A abelian variety: natural splitting

\[\text{Pic}(A) \otimes \mathbb{Q} = \text{Pic}^+(A) \oplus \text{Pic}^-(A) \text{ of } (\pm 1)\text{-eigenspaces for } (-1_A)^*, \]
A abelian variety: natural splitting

\[\text{Pic}(A) \otimes \mathbb{Q} = \text{Pic}^+(A) \oplus \text{Pic}^-(A) \] of \((\pm 1)\)-eigenspaces for \((-1_A)^*\),
with \[\text{Pic}^+(A) \cong H^2(A, \mathbb{Q})_{\text{alg}} \] and \[\text{Pic}^-(A) = \text{Pic}^0(A) \otimes \mathbb{Q}. \]
A abelian variety: natural splitting

$\text{Pic}(A) \otimes \mathbb{Q} = \text{Pic}^+(A) \oplus \text{Pic}^-(A)$ of (± 1)-eigenspaces for $(-1_A)^*$, with $\text{Pic}^+(A) \cong H^2(A, \mathbb{Q})_{\text{alg}}$ and $\text{Pic}^-(A) = \text{Pic}^0(A) \otimes \mathbb{Q}$.

Already necessary to invert 2, hence

Convention: From now on, CH means $CH \otimes \mathbb{Q}$.
A abelian variety: natural splitting

\[\text{Pic}(A) \otimes \mathbb{Q} = \text{Pic}^+(A) \oplus \text{Pic}^-(A) \]
of \((\pm 1)\)-eigenspaces for \((-1_A)^*\), with
\[\text{Pic}^+(A) \cong H^2(A, \mathbb{Q})_{\text{alg}} \quad \text{and} \quad \text{Pic}^-(A) = \text{Pic}^\circ(A) \otimes \mathbb{Q}. \]

Already necessary to invert 2, hence

Convention: From now on, \(CH \) means \(CH \otimes \mathbb{Q} \).

Theorem (O’Sullivan, 2011)

\[\exists \text{ multiplicative splitting } \quad CH(A) = CH(A)_{(0)} \oplus CH(A)_{\text{hom}}, \]
extending the previous one for \(CH^1 \).
A abelian variety: natural splitting

\[\text{Pic}(A) \otimes \mathbb{Q} = \text{Pic}^+(A) \oplus \text{Pic}^-(A) \] of \((\pm 1)\)-eigenspaces for \((\bar{1}_A)^*\),

with \(\text{Pic}^+(A) \cong H^2(A, \mathbb{Q})_{\text{alg}}\) and \(\text{Pic}^-(A) = \text{Pic}^0(A) \otimes \mathbb{Q}\).

Already necessary to invert 2, hence

Convention : From now on, CH means \(CH \otimes \mathbb{Q}\).

Theorem (O’Sullivan, 2011)

\[\exists \quad \text{multiplicative splitting} \quad CH(A) = CH(A)_{(0)} \oplus CH(A)_{\text{hom}}, \]

extending the previous one for \(CH^1\).

\(CH(A)_{(0)}\) is the space of ”symmetrically distinguished cycles”. The construction is quite involved (80 pages).
The property (WSP)
The property (WSP)

Proving the existence of a multiplicative splitting is quite difficult, already for abelian varieties. However, assuming $b_1(X) = 0$ (hence $CH^1(X)^{\text{hom}} = 0$), it implies the following weaker property:
The property (WSP)

Proving the existence of a multiplicative splitting is quite difficult, already for abelian varieties. However, assuming $b_1(X) = 0$ (hence $CH^1(X)_{\text{hom}} = 0$), it implies the following weaker property:

(WSP) Let $DCH(X)$ be the subalgebra of $CH(X)$ spanned by divisors. The cycle class map $DCH(X) \to H(X, \mathbb{Q})$ is injective.

Arnaud Beauville
The Chow ring of hyperkähler manifolds
The property (WSP)

Proving the existence of a multiplicative splitting is quite difficult, already for abelian varieties. However, assuming $b_1(X) = 0$ (hence $CH^1(X)_{hom} = 0$), it implies the following weaker property:

(WSP) Let $DCH(X)$ be the subalgebra of $CH(X)$ spanned by divisors. The cycle class map $DCH(X) \to H(X, \mathbb{Q})$ is injective.

Or equivalently:

Any polynomial relation $P(D_1, \ldots, D_k) = 0$ between divisor classes in $H(X, \mathbb{Q})$ already holds in $CH(X)$.

Arnaud Beauville
The Chow ring of hyperkähler manifolds
The property (WSP)

Proving the existence of a multiplicative splitting is quite difficult, already for abelian varieties. However, assuming $b_1(X) = 0$ (hence $CH^1(X)_{hom} = 0$), it implies the following weaker property:

(WSP) Let $DCH(X)$ be the subalgebra of $CH(X)$ spanned by divisors. The cycle class map $DCH(X) \to H(X, \mathbb{Q})$ is injective.

Or equivalently:

Any polynomial relation $P(D_1, \ldots, D_k) = 0$ between divisor classes in $H(X, \mathbb{Q})$ already holds in $CH(X)$.

Voisin has refined (WSP) to incorporate part 3 of Theorem 1:

(WSP$^+$) The cycle class map is injective on the subalgebra of $CH(X)$ spanned by divisors and the Chern classes of X.

Arnaud Beauville
The Chow ring of hyperkähler manifolds
For which varieties does \((WSP)\) or \((WSP^+)\) hold?
For which varieties does (WSP) or (WSP⁺) hold?

Claim: (WSP) does not hold for all Calabi-Yau varieties.
For which varieties does (WSP) or (WSP$^+$) hold?

Claim: (WSP) does **not** hold for all Calabi-Yau varieties.

Lemma

$X \to Y$ surjective, (WSP) for X \implies (WSP) for Y.
For which varieties does (WSP) or (WSP⁺) hold?

Claim: (WSP) does not hold for all Calabi-Yau varieties.

Lemma

\[\text{X } \to \text{ Y surjective, (WSP) for X } \Rightarrow \text{ (WSP) for Y.} \]

Proof:

\[
\begin{align*}
DCH(X) & \hookrightarrow H(X, \mathbb{Q}) \\
DCH(Y) & \rightarrow H(Y, \mathbb{Q}).
\end{align*}
\]
For which varieties does (WSP) or (WSP\(^+\)) hold?

Claim: (WSP) does not hold for all Calabi-Yau varieties.

Lemma

\[X \to Y \text{ surjective, } (\text{WSP}) \text{ for } X \implies (\text{WSP}) \text{ for } Y. \]

Proof:

\[
\begin{align*}
DCH(X) & \hookrightarrow H(X, \mathbb{Q}) \\
DCH(Y) & \to H(Y, \mathbb{Q}).
\end{align*}
\]

Example: \(b : Y \to \mathbb{P}^3 \) blow up of \(C \subset \mathbb{P}^3 \) of genus 2, degree 5; \(E \) exceptional divisor. Then \(\text{Pic}(Y) = \langle b^* H, E \rangle \). For general \(C \), \(b^* H^2, b^* H \cdot E, E^2 \) linearly independent in \(DCH^2(Y) \),
For which varieties does (WSP) or (WSP⁺) hold?

Claim: (WSP) does not hold for all Calabi-Yau varieties.

Lemma

\[X \to Y \text{ surjective, } (\text{WSP}) \text{ for } X \implies (\text{WSP}) \text{ for } Y. \]

Proof:

\[DCH(X) \xrightarrow{\sim} H(X, \mathbb{Q}) \]

\[DCH(Y) \xrightarrow{\sim} H(Y, \mathbb{Q}). \]

Example:

\(b : Y \to \mathbb{P}^3 \) blow up of \(C \subset \mathbb{P}^3 \) of genus 2, degree 5; \(E \) exceptional divisor. Then \(\text{Pic}(Y) = \langle b^*H, E \rangle \). For general \(C \), \(b^*H^2, b^*H \cdot E, E^2 \) linearly independent in \(DCH^2(Y) \), but \(b_4(Y) = b_2(Y) = 2 \), so \(DCH^2(Y) \not\subseteq H^4(Y) \).
However...
However...

Then $X := \text{double covering of } Y \text{ branched along } D \in | -2K_Y |$ is a Calabi-Yau threefold, $DCH^2(X) \leftrightarrow H^4(X)$.

Arnaud Beauville
The Chow ring of hyperkähler manifolds
Then $X :=$ double covering of Y branched along $D \in \mid -2K_Y \mid$ is a Calabi-Yau threefold, $DCH^2(X) \leftrightarrow H^4(X)$.

However, for a Calabi-Yau **hypersurface** X of dimension n:

$$CH^p(X) \otimes CH^{n-p}(X) \xrightarrow{\mu} \mathbb{Q} \cdot h^n \subset CH^n(X) \quad (1)$$
Then $X := $ double covering of Y branched along $D \in |-2K_Y|$ is a Calabi-Yau threefold, $DCH^2(X) \leftrightarrow H^4(X)$.\[\]

However, for a Calabi-Yau \textbf{hypersurface} X of dimension n:

$$CH^p(X) \otimes CH^{n-p}(X) \xrightarrow{\mu} \mathbb{Q} \cdot h^n \subset CH^n(X) \quad (1)$$

(Voisin); this was extended to complete intersections by Lie Fu.
Then $X := \text{double covering of } Y$ branched along $D \in \{-2K_Y\}$ is a Calabi-Yau threefold, $DCH^2(X) \hookrightarrow H^4(X)$.

However, for a Calabi-Yau \textbf{hypersurface} X of dimension n:

$$\text{CH}^p(X) \otimes \text{CH}^{n-p}(X) \xrightarrow{\mu} \mathbb{Q} \cdot h^n \subset \text{CH}^n(X) \tag{1}$$

(Voisin); this was extended to complete intersections by Lie Fu. The key point of the proof is to express the modified diagonal cycle in $\text{CH}^{2n}(X \times X \times X)$ in terms of the lines contained in X.

Arnaud Beauville

The Chow ring of hyperkähler manifolds
Then $X :=$ double covering of Y branched along $D \in |-2K_Y|$ is a Calabi-Yau threefold, $DCH^2(X) \leftrightarrow H^4(X)$.

However, for a Calabi-Yau hypersurface X of dimension n:

$$CH^p(X) \otimes CH^{n-p}(X) \overset{\mu}{\longrightarrow} \mathbb{Q} \cdot h^n \subset CH^n(X) \quad (1)$$

(Voisin); this was extended to complete intersections by Lie Fu.

The key point of the proof is to express the modified diagonal cycle in $CH^{2n}(X \times X \times X)$ in terms of the lines contained in X.

Question: Is there a larger (natural) class of Calabi-Yau manifolds for which (1) holds?
Conjecture

\((WSP^+)\) holds for projective hyperkähler manifolds.
Conjecture

(WSP$^+$) holds for projective hyperkähler manifolds.

Here hyperkähler = irreducible holomorphic symplectic (IHS) = simply-connected + $H^0(X, \Omega^2_X) = \mathbb{C}\sigma$, σ symplectic 2-form.
Conjecture

(WSP$^+$) holds for projective hyperkähler manifolds.

Here hyperkähler = irreducible holomorphic symplectic (IHS) = simply-connected + $H^0(X, \Omega^2_X) = \mathbb{C} \sigma$, σ symplectic 2-form.

Recall: Many interesting properties, but very few examples.
Hyperkähler manifolds

Conjecture

\((\text{WSP}^+)\) holds for projective hyperkähler manifolds.

Here hyperkähler \(=\) irreducible holomorphic symplectic (IHS) \(=\) simply-connected + \(H^0(X, \Omega_X^2) = \mathbb{C}\sigma, \ \sigma\text{ symplectic 2-form.}\)

\textbf{Recall :} Many interesting properties, but very few examples.

\textbf{Up to deformation,} only two series in each (even) dimension:

1. for \(S\ \text{K3}, \ S^{[n]} := \text{Hilbert scheme} = \{Z \subset S \mid \text{length}(Z) = n\}\)

\(\text{= desingularization of the symmetric product } \text{Sym}^n S.\)
Conjecture

(WSP$^+$) holds for projective hyperkähler manifolds.

Here hyperkähler = irreducible holomorphic symplectic (IHS) = simply-connected + $H^0(X, \Omega^2_X) = \mathbb{C}\sigma$, σ symplectic 2-form.

Recall: Many interesting properties, but very few examples.

Up to deformation, only two series in each (even) dimension:

1. for S K3, $S^{[n]} :=$ Hilbert scheme $= \{Z \subset S \mid \text{length}(Z) = n\}$ $= \text{desingularization of the symmetric product } \text{Sym}^n S$.

2. K_n ("generalized Kummer varieties"): analogous construction starting from $S = \text{abelian surface}$.
Hyperkähler manifolds

Conjecture

(WSP\(^+\)) holds for projective hyperkähler manifolds.

Here hyperkähler = irreducible holomorphic symplectic (IHS) = simply-connected \(+ \ H^0(X, \Omega^2_X) = \mathbb{C}\sigma, \ \sigma \) symplectic 2-form.

Recall: Many interesting properties, but very few examples.

Up to deformation, only two series in each (even) dimension:

1. for \(S \ K3, \ S^{[n]} := \) Hilbert scheme = \(\{ Z \subset S \mid \text{length}(Z) = n \} \)
 = desingularization of the symmetric product \(Sym^n S \).

2. \(K_n \) ("generalized Kummer varieties"): analogous construction starting from \(S = \) abelian surface.

+ 2 sporadic examples in dimension 6 and 10 (O’Grady).
Deformations

Arnaud Beauville
The Chow ring of hyperkähler manifolds
Recall: For each g, one 19-dimensional moduli space \mathcal{F}_g of K3 surfaces $S \subset \mathbb{P}^g$ ($S_4 \subset \mathbb{P}^3$, $S_{2,3} \subset \mathbb{P}^4$, etc.)
Recall: For each \(g \), one 19-dimensional moduli space \(\mathcal{F}_g \) of K3 surfaces \(S \subset \mathbb{P}^g \) (\(S_4 \subset \mathbb{P}^3 \), \(S_{2,3} \subset \mathbb{P}^4 \), etc.)

The \(S^{[n]} \) for \(S \in \mathcal{F}_g \) form only a \textit{hypersurface} in the deformation space of \(S^{[n]} \), which has dimension 20.
Recall: For each \(g \), one 19-dimensional moduli space \(\mathcal{F}_g \) of K3 surfaces \(S \subset \mathbb{P}^g \) (\(S_4 \subset \mathbb{P}^3 \), \(S_{2,3} \subset \mathbb{P}^4 \), etc.)

The \(S^{[n]} \) for \(S \in \mathcal{F}_g \) form only a **hypersurface** in the deformation space of \(S^{[n]} \), which has dimension 20.

We say that \(X \) is of type \(K3^{[n]} \) if it is deformation equivalent to \(S^{[n]} \) for some K3 surface \(S \); same for type \(K_n \).
Recall: For each g, one 19-dimensional moduli space \mathcal{F}_g of K3 surfaces $S \subset \mathbb{P}^g$ ($S_4 \subset \mathbb{P}^3$, $S_{2,3} \subset \mathbb{P}^4$, etc.)

The $S^{[n]}$ for $S \in \mathcal{F}_g$ form only a hypersurface in the deformation space of $S^{[n]}$, which has dimension 20.

We say that X is of type $K3^{[n]}$ if it is deformation equivalent to $S^{[n]}$ for some K3 surface S; same for type K_n.

Challenge: Describe explicitely complete families of projective varieties of type $K3^{[n]}$.
Recall: For each g, one 19-dimensional moduli space \mathcal{F}_g of K3 surfaces $S \subset \mathbb{P}^g$ ($S_4 \subset \mathbb{P}^3$, $S_{2,3} \subset \mathbb{P}^4$, etc.)

The $S^{[n]}$ for $S \in \mathcal{F}_g$ form only a hypersurface in the deformation space of $S^{[n]}$, which has dimension 20.

We say that X is of type $K3^{[n]}$ if it is deformation equivalent to $S^{[n]}$ for some K3 surface S; same for type K_n.

Challenge: Describe explicitly complete families of projective varieties of type $K3^{[n]}$.

Example (Donagi-AB): The variety $F(V_3)$ of lines contained in a smooth cubic fourfold $V_3 \subset \mathbb{P}^5$ is of type $K3^{[2]}$, and has 20 moduli.
Recall: For each g, one 19-dimensional moduli space \mathcal{F}_g of K3 surfaces $S \subset \mathbb{P}^g$ ($S_4 \subset \mathbb{P}^3$, $S_{2,3} \subset \mathbb{P}^4$, etc.)

The $S^{[n]}$ for $S \in \mathcal{F}_g$ form only a hypersurface in the deformation space of $S^{[n]}$, which has dimension 20.

We say that X is of type $K3^{[n]}$ if it is deformation equivalent to $S^{[n]}$ for some K3 surface S; same for type K_n.

Challenge: Describe explicitly complete families of projective varieties of type $K3^{[n]}$.

Example (Donagi-AB): The variety $F(V_3)$ of lines contained in a smooth cubic fourfold $V_3 \subset \mathbb{P}^5$ is of type $K3^{[2]}$, and has 20 moduli.

Other examples: O’Grady, Iliev-Ranestad, Debarre-Voisin ($n = 2$); Iliev-Kapustka2-Ranestad ($n = 3$), Lehn2-Sorger-v. Straten ($n = 4$).
No example known for type K_n.
No example known for type K_n.

Proposition (Voisin)

Let S be a K3 surface, $\tau := \text{rk } H^2(S)_{tr} = 22 - \text{rk } \text{Pic}(S)$. Then (WSP^+) holds for $S^{[n]}$ for $n \leq 2\tau + 4$, in particular for $n \leq 8$.
No example known for type K_n.

Proposition (Voisin)

S K3, $\tau := \text{rk } H^2(S)_{tr} = 22 - \text{rk Pic}(S)$. Then (WSP$^+$) holds for $S^{[n]}$ for $n \leq 2\tau + 4$, in particular for $n \leq 8$.

Idea: Using de Cataldo-Migliorini, reduce to analogous statement for S^n: for $n \leq 2\tau + 1$, $DDCH(S^n) \hookrightarrow H(S^n)$, where $DDCH(S^n) := \text{subalgebra of } CH(S^n) \text{ spanned by pull back of divisors in } S \text{ and the diagonal in } S \times S$.

Arnaud Beauville

The Chow ring of hyperkähler manifolds
No example known for type K_n.

Proposition (Voisin)

$S K3, \tau := \text{rk } H^2(S)_{tr} = 22 - \text{rk } \text{Pic}(S)$. Then (WSP^+) holds for $S[^n]$ for $n \leq 2\tau + 4$, in particular for $n \leq 8$.

Idea: Using de Cataldo-Migliorini, reduce to analogous statement for S^n: for $n \leq 2\tau + 1$, $\text{DDCH}(S^n) \hookrightarrow \text{H}(S^n)$, where $\text{DDCH}(S^n) :=$ subalgebra of $\text{CH}(S^n)$ spanned by pull back of divisors in S and the diagonal in $S \times S$.

Then write down complete list of relations between these generators of $\text{DDCH}(S^n)$, and check that they hold already in $\text{CH}(S^n)$.
Remark (Q. Yin): Can we go one step further, namely prove

\[DDCH(S^n) \hookrightarrow H(S^n) \] for \(n = 2\tau + 2 \)?
Remark (Q. Yin):

\[\text{DDCH}(S^n) \hookrightarrow H(S^n) \text{ for } n = 2\tau + 2 \iff " \wedge^{\tau+1} H^2(S)_{\text{tr}} = 0" \]

in the sense of Chow motives, i.e. the *Chow motive of S is finite-dimensional* in the sense of Kimura.
Remark (Q. Yin):

\[DDCH(S^n) \hookrightarrow H(S^n) \text{ for } n = 2\tau + 2 \iff \wedge^{\tau+1} H^2(S)_{tr} = 0 \]

in the sense of Chow motives, i.e. the Chow motive of \(S \) is finite-dimensional in the sense of Kimura. This is probably very hard to prove ...
Remark (Q. Yin):

$\text{DDCH}(S^n) \hookrightarrow H(S^n)$ for $n = 2\tau + 2 \iff " \wedge^{\tau+1} H^2(S)_{tr} = 0"$

in the sense of Chow motives, i.e. the Chow motive of S is finite-dimensional in the sense of Kimura. This is probably very hard to prove ...

- Maulik-Voisin: (WSP) holds for $S^{[n]}$ for every n (uses the action of Nakajima’s Heisenberg-type algebra).
Remark (Q. Yin):

\[DDCH(S^n) \hookrightarrow H(S^n) \text{ for } n = 2\tau + 2 \iff \text{”} \bigwedge^{\tau+1} H^2(S)_{tr} = 0 \text{”} \]

in the sense of Chow motives, i.e. the Chow motive of \(S \) is\textbf{ finite-dimensional} in the sense of Kimura. This is probably very hard to prove ...

- Maulik-Voisin: (WSP) holds for \(S^{[n]} \) for every \(n \) (uses the action of Nakajima’s Heisenberg-type algebra).
- (WSP\(^+\)) holds for \(K_n \ \forall n \) (Fu), for \(F(V_3) \) (Voisin), for a general double EPW-sextic (Ferretti).
Remark (Q. Yin):

$DDCH(S^n) \hookrightarrow H(S^n)$ for $n = 2\tau + 2 \iff \bigwedge^{\tau+1} H^2(S)^{tr} = 0$ in the sense of Chow motives, i.e. the Chow motive of S is finite-dimensional in the sense of Kimura. This is probably very hard to prove ...

- Maulik-Voisin: (WSP) holds for $S^{[n]}$ for every n (uses the action of Nakajima’s Heisenberg-type algebra).

- (WSP$^+$) holds for $K_n \forall n$ (Fu), for $F(V_3)$ (Voisin), for a general double EPW-sextic (Ferretti).

Beware that the Chow group is not stable under deformation!
Remark (Q. Yin):

\[\text{DDCH}(S^n) \hookrightarrow H(S^n) \text{ for } n = 2\tau + 2 \iff \wedge^{\tau+1} H^2(S)_{tr} = 0 \]

in the sense of Chow motives, i.e. the Chow motive of S is finite-dimensional in the sense of Kimura. This is probably very hard to prove ...

- Maulik-Voisin: (WSP) holds for $S^{[n]}$ for every n (uses the action of Nakajima’s Heisenberg-type algebra).
- (WSP$^+$) holds for $K_n \forall n$ (Fu), for $F(V_3)$ (Voisin), for a general double EPW-sextic (Ferretti).

Beware that the Chow group is not stable under deformation!

So (WSP) for $S^{[n]}$ implies nothing for type $K3^{[n]}$.
Riess’ theorem
Riess’ theorem

Proposition (U. Riess)

(WSP) holds for every X of type $K3^n$ or K_n with $\rho(X) \geq 5.$
Proposition (U. Riess)

(WSP) holds for every X of type $K3^n$ or K_n with $\rho(X) \geq 5$.

Idea: Recall: for any X HK of dimension $2n$, \exists quadratic form $q : H^2(X, \mathbb{Z}) \to \mathbb{Z}$ such that $\alpha^{2n} = c \cdot q(\alpha)^n$ for all $\alpha \in H^2(X, \mathbb{Z})$.
Riess’ theorem

Proposition (U. Riess)

(WSP) holds for every X of type $K3^n$ or K_n with $\rho(X) \geq 5$.

Idea: Recall: for any X HK of dimension $2n$, \exists quadratic form $q : H^2(X, \mathbb{Z}) \to \mathbb{Z}$ such that $\alpha^{2n} = c \cdot q(\alpha)^n$ for all $\alpha \in H^2(X, \mathbb{Z})$.

Easy part: $\text{Ker} \left(S \cdot \text{Pic}(X) \otimes \mathbb{C} \to H^\bullet(X, \mathbb{C}) \right) = \text{ideal spanned by classes } D^{n+1} \text{ for } D \in \text{Pic}(X) \otimes \mathbb{C}, \ q(D) = 0 \ (\text{Bogomolov}).$
Riess’ theorem

Proposition (U. Riess)

(WSP) holds for every X of type $K3[n]$ or K_n with $\rho(X) \geq 5$.

Idea: Recall: for any X HK of dimension $2n$, \exists quadratic form $q : H^2(X, \mathbb{Z}) \to \mathbb{Z}$ such that $\alpha^{2n} = c \cdot q(\alpha)^n$ for all $\alpha \in H^2(X, \mathbb{Z})$.

Easy part: $\text{Ker} \left(S \cdot \text{Pic}(X) \otimes \mathbb{C} \to H^\bullet(X, \mathbb{C})\right) = \text{ideal spanned by classes } D^{n+1} \text{ for } D \in \text{Pic}(X) \otimes \mathbb{C}, \ q(D) = 0$ (Bogomolov).

Thus (WSP) \iff for these classes, $D^{n+1} = 0$ in $CH(X) \otimes \mathbb{C}$.

Arnaud Beauville

The Chow ring of hyperkähler manifolds
Riess’ theorem

Proposition (U. Riess)

(WSP) holds for every X of type $K3^{[n]}$ or K_n with $\rho(X) \geq 5$.

Idea: Recall: for any X HK of dimension $2n$, \exists quadratic form $q : H^2(X, \mathbb{Z}) \to \mathbb{Z}$ such that $\alpha^{2n} = c \cdot q(\alpha)^n$ for all $\alpha \in H^2(X, \mathbb{Z})$.

Easy part: $\text{Ker} \left(S^* \text{Pic}(X) \otimes \mathbb{C} \to H^*(X, \mathbb{C}) \right) = \text{ideal spanned by classes } D^{n+1} \text{ for } D \in \text{Pic}(X) \otimes \mathbb{C}, \; q(D) = 0$ (Bogomolov).

Thus (WSP) \iff for these classes, $D^{n+1} = 0$ in $CH(X) \otimes \mathbb{C}$.

If $\rho \geq 5$, the quadric $q = 0$ in $\mathbb{P}(\text{Pic}(X) \otimes \mathbb{C})$ has a \mathbb{Q}-point.
Riess’ theorem

Proposition (U. Riess)

(WSP) holds for every X of type $K3^n$ or K_n with $\rho(X) \geq 5$.

Idea: Recall: for any X HK of dimension $2n$, \exists quadratic form $q : H^2(X, \mathbb{Z}) \to \mathbb{Z}$ such that $\alpha^{2n} = c \cdot q(\alpha)^n$ for all $\alpha \in H^2(X, \mathbb{Z})$.

Easy part: $\text{Ker} \left(S \cdot \text{Pic}(X) \otimes \mathbb{C} \to H^\bullet(X, \mathbb{C}) \right) = \text{ideal spanned by classes } D^{n+1} \text{ for } D \in \text{Pic}(X) \otimes \mathbb{C}, \ q(D) = 0$ (Bogomolov).

Thus (WSP) \iff for these classes, $D^{n+1} = 0$ in $CH(X) \otimes \mathbb{C}$.

If $\rho \geq 5$, the quadric $q = 0$ in $\mathbb{P}(\text{Pic}(X) \otimes \mathbb{C})$ has a \mathbb{Q}-point \Rightarrow

(WSP) $\iff \forall \ D \in \text{Pic}(X)$ with $q(D) = 0$, $D^{n+1} = 0$ in $CH(X)$.
Riess’ theorem: hard part

Arnaud Beauville
The Chow ring of hyperkähler manifolds
Using work of Markman, Matsushita, Bayer-Macrì, ..., reduce to prove $D^{n+1} = 0$ in $CH(X)$ for $D = f^*H$, where:
Using work of Markman, Matsushita, Bayer-Macrì, ..., reduce to prove $D^{n+1} = 0$ in $CH(X)$ for $D = f^*H$, where:

$f : X \xrightarrow{\varphi} X' \xrightarrow{p} \mathbb{P}^n$, X' HK, φ birational, p Lagrangian fibration.
Using work of Markman, Matsushita, Bayer-Macrì, ..., reduce to prove $D^{n+1} = 0$ in $\text{CH}(X)$ for $D = f^*H$, where:

$f : X \xrightarrow{\varphi} X' \xrightarrow{p} \mathbb{P}^n$, X' HK, φ birational, p Lagrangian fibration.

$p^*H^{n+1} = 0$ in $\text{CH}(X')$
Using work of Markman, Matsushita, Bayer-Macrì, ..., reduce to prove $D^{n+1} = 0$ in $CH(X)$ for $D = f^*H$, where:

$f : X \xrightarrow{\varphi} X' \xrightarrow{p} \mathbb{P}^n$, X' HK, φ birational, p Lagrangian fibration.

$p^*H^{n+1} = 0$ in $CH(X') \Rightarrow D^{n+1} = \varphi^*p^*H^{n+1} = 0$ in $CH(X)$. □
The Bloch-Beilinson filtration
The Bloch-Beilinson filtration

The one-step filtration $CH_{hom} \subset CH^\bullet$ should extend:
The Bloch-Beilinson filtration

The one-step filtration $CH_{hom}^\bullet \subset CH^\bullet$ should extend:

Conjecture (Bloch-Beilinson)

For every X smooth projective, \exists filtration F^\bullet on $CH(X)$:

$$CH^p = F^0 \supset F^1 = CH_{hom}^p \supset \ldots \supset F^{p+1} = 0$$

which is functorial (both for f^* and f_*) and multiplicative.
The Bloch-Beilinson filtration

The one-step filtration $CH_{hom}^\bullet \subset CH^\bullet$ should extend:

Conjecture (Bloch-Beilinson)

For every X smooth projective, \exists filtration F^\bullet on $CH(X)$:

$$CH^p = F^0 \supset F^1 = CH_{hom}^p \supset \ldots \supset F^{p+1} = 0$$

which is functorial (both for f^\ast and f_\ast) and multiplicative.

Hope: For hyperkähler manifolds, the B-B filtration admits a multiplicative splitting, i.e. comes from a graded ring structure:

$$CH^p(X) = CH^p_{(0)} \oplus \ldots \oplus CH^p_{(i)} \oplus \ldots \oplus CH^p_{(p)} \quad \underbrace{\oplus \ldots \oplus}_{F^i}$$
The Bloch-Beilinson filtration

The one-step filtration $\text{CH}_{\text{hom}}^\bullet \subset \text{CH}^\bullet$ should extend:

Conjecture (Bloch-Beilinson)

For every X smooth projective, \exists filtration F^\bullet on $\text{CH}(X)$:

$$\text{CH}^p = F^0 \supset F^1 = \text{CH}_{\text{hom}}^p \supset \ldots \supset F^{p+1} = 0$$

which is functorial (both for f^* and f_*) and multiplicative.

Hope: For hyperkähler manifolds, the B-B filtration admits a multiplicative splitting, i.e. comes from a graded ring structure:

$$\text{CH}^p(X) = \underbrace{\text{CH}^p_{(0)} \oplus \ldots \oplus \text{CH}^p_{(i)} \oplus \ldots \oplus \text{CH}^p_{(p)}}_{F^i}$$

Recent work of Voisin gives some evidence in the case of CH^0:

Arnaud Beauville

The Chow ring of hyperkähler manifolds
The opposite filtration

Arnaud Beauville

The Chow ring of hyperkähler manifolds
For any projective X, $\text{gr}_F^p C H_0(X)$ should be controlled by $H^0(X, \Omega_X^p)$;
The opposite filtration

For any projective X, $\text{gr}_F^p \cdot CH_0(X)$ should be controlled by $H^0(X, \Omega^p_X)$; thus for X HK of dimension $2n$, $F^{2p-1} = F^{2p}$ and

$$CH_0(X) = F^0 \supset F^2 \supset \ldots \supset F^{2n}.$$
The opposite filtration

For any projective X, $\text{gr}_{F^p}^* CH_0(X)$ should be controlled by $H^0(X, \Omega_X^p)$; thus for X HK of dimension $2n$, $F^{2p-1} = F^{2p}$ and

$$CH_0(X) = F^0 \supset F^2 \supset \ldots \supset F^{2n}.$$

Voisin defines another filtration S^\bullet of $CH_0(X)$ which should be opposite to F^\bullet.

Arnaud Beauville
The Chow ring of hyperkähler manifolds
The opposite filtration

For any projective X, $\text{gr}_F^p \cdot CH_0(X)$ should be controlled by $H^0(X, \Omega^p_X)$; thus for X HK of dimension $2n$, $F^{2p-1} = F^{2p}$ and

$$CH_0(X) = F^0 \supset F^2 \supset \ldots \supset F^{2n}.$$

Voisin defines another filtration S^\bullet of $CH_0(X)$ which should be opposite to F^\bullet.

For $x \in X$, put $O_x := \{y \in X \mid y \sim_{\text{rat}} x\}$.

Arnaud Beauville The Chow ring of hyperkähler manifolds
The opposite filtration

For any projective X, $\text{gr}^p_{F^*} CH_0(X)$ should be controlled by $H^0(X, \Omega^p_X)$; thus for X HK of dimension $2n$, $F^{2p-1} = F^{2p}$ and

$$CH_0(X) = F^0 \supset F^2 \supset \ldots \supset F^{2n}.$$

Voisin defines another filtration S^* of $CH_0(X)$ which should be opposite to F^*.

For $x \in X$, put $O_x := \{ y \in X \mid y \sim_{\text{rat}} x\}$.

O_x is a countable union of closed subvarieties Z which are isotropic – i.e. $\sigma|_Z = 0$. In particular $\dim O_x \leq n$.

Arnaud Beauville

The Chow ring of hyperkähler manifolds
The conjectural splitting

Arnaud Beauville

The Chow ring of hyperkähler manifolds
Definition: $S^i(X) := \{x \in X \mid \dim O_x \geq i\}$
The conjectural splitting

Definition: $S^i(X) := \{x \in X \mid \dim O_x \geq i\}$

Stratification of $X = S^0(X) \supseteq S^1(X) \supseteq \ldots \supseteq S^n(X)$.

Arnaud Beauville

The Chow ring of hyperkähler manifolds
The conjectural splitting

Definition: $S^i(X) := \{ x \in X \mid \dim O_x \geq i \}$

Stratification of $X = S^0(X) \supset S^1(X) \supset \ldots \supset S^n(X)$.

\rightsquigarrow filtration $S^i CH_0(X) = \langle S^i(X) \rangle$:

$$CH_0(X) = S^0 \supset S^1 \supset \ldots \supset S^n \supset S^{n+1} = 0.$$

Example: For S K3, $S^1(S) = \{ x \in S \mid [x] = c_S \text{ in } CH_0(S) \}$, $S^1 CH_0(S) = \mathbb{Q} \cdot c_S$.
The conjectural splitting

Definition: $S^i(X) := \{x \in X \mid \dim O_x \geq i\}$

Stratification of $X = S^0(X) \supset S^1(X) \supset \ldots \supset S^n(X)$.

\rightsquigarrow filtration $S^i CH_0(X) = \langle S^i(X) \rangle$:

$$CH_0(X) = S^0 \supset S^1 \supset \ldots \supset S^n \supset S^{n+1} = 0.$$

Example: For S K3, $S^1(S) = \{x \in S \mid [x] = c_S \text{ in } CH_0(S)\}$, $S^1 CH_0(S) = \mathbb{Q} \cdot c_S$.

Conjecture (Voisin): The filtration F^\bullet and S^\bullet are opposite; i.e., if $CH_{(j)} := S^{n-j} \cap F^{2j}$:

$$CH_0(X) = CH_{(0)} \oplus \ldots \oplus CH_{(2i)} \oplus \ldots \oplus CH_{(2j)} \oplus \ldots \oplus CH_{(2n)}.$$

Arnaud Beauville
The Chow ring of hyperkähler manifolds
Some evidence (Voisin)
Some evidence (Voisin)

Proposition

The conjecture holds for $S^{[n]}$ and $F(V_3)$.
Some evidence (Voisin)

Proposition

The conjecture holds for $S^{[n]}$ and $F(V_3)$.

The proof rests on a more explicit description of S^\bullet in these cases.
Some evidence (Voisin)

Proposition

The conjecture holds for $S^{[n]}$ and $F(V_3)$.

The proof rests on a more explicit description of S^\bullet in these cases.
Proposition

The conjecture holds for $S^{[n]}$ and $F(V_3)$.

The proof rests on a more explicit description of S^* in these cases.

Towards the general case: Consider the stratification

$$X = S^0(X) \supseteq S^1(X) \supseteq \ldots \supseteq S^n(X).$$
Some evidence (Voisin)

Proposition

The conjecture holds for \(S^n \) and \(F(V_3) \).

The proof rests on a more explicit description of \(S^* \) in these cases.

Towards the general case: Consider the stratification

\[
X = S^0(X) \supset S^1(X) \supset \ldots \supset S^n(X).
\]

\(S^n(X) = \{ x \in X \mid \dim O_x = n \} \) has dimension \(n \).
Proposition

The conjecture holds for S^n and $F(V_3)$.

The proof rests on a more explicit description of S^\bullet in these cases.

Towards the general case: Consider the stratification

$$X = S^0(X) \supset S^1(X) \supset \ldots \supset S^n(X).$$

$S^n(X) = \{x \in X \mid \dim O_x = n\}$ has dimension n.

Conjecture: $\dim S^i(X) = 2n - i$.

Some evidence (Voisin)
Some evidence (Voisin)

Proposition

The conjecture holds for $S^{[n]}$ and $F(V_3)$.

The proof rests on a more explicit description of S^* in these cases.

Towards the general case: Consider the stratification

$$X = S^0(X) \supset S^1(X) \supset \ldots \supset S^n(X).$$

$S^n(X) = \{ x \in X \mid \dim O_x = n \}$ has dimension n.

Conjecture: $\dim S^i(X) = 2n - i$.

Proposition

$$\dim S^i(X) = 2n - i \implies CH_0(X) = S^{n-i} + F^{2i+2}.$$
Ingredients of the proof
The proof rests on symplectic geometry:
The proof rests on symplectic geometry:

Proposition

\[Z \subset S^i(X) \text{ irreducible of dimension } 2n - i \Rightarrow Z \text{ coisotropic} \]

\((T^\perp_Z \subset T_Z) \text{ and } \exists f : Z \to B, \text{ fibers of } f = \text{orbits.}\)
The proof rests on symplectic geometry:

Proposition

\[Z \subset S^i(X) \text{ irreducible of dimension } 2n - i \Rightarrow Z \text{ coisotropic} \]

\[(T_Z^\perp \subset T_Z) \text{ and } \exists f : Z \to B, \text{ fibers of } f = \text{orbits.}\]

\[\Rightarrow \sigma|_B = f^*\sigma_B, \sigma_B \text{ symplectic.} \]
The proof rests on symplectic geometry:

Proposition

\[Z \subset S^i(X) \text{ irreducible of dimension } 2n - i \implies Z \text{ coisotropic} \]

\[(T_Z^\perp \subset T_Z) \text{ and } \exists f : Z \to B, \text{ fibers of } f = \text{orbits}.\]

\[\implies \sigma|_B = f^*\sigma_B, \sigma_B \text{ symplectic}. \]

\[\implies \sigma^{n-i}|_B \neq 0 \]
The proof rests on symplectic geometry:

Proposition

\[Z \subset S^i(X) \text{ irreducible of dimension } 2n - i \Rightarrow Z \text{ coisotropic} \]

\((T^\perp_Z \subset T_Z) \) and \(\exists f : Z \rightarrow B \), fibers of \(f = \) orbits.

\[\Rightarrow \sigma|_B = f^*\sigma_B, \sigma_B \text{ symplectic}. \]

\[\Rightarrow \sigma^{n-i}|_B \neq 0 \Rightarrow H^0(X, \Omega^p_X) \hookrightarrow H^0(Z, \Omega^p_Z) \text{ for } 0 \leq p \leq n - i. \]
The proof rests on symplectic geometry:

Proposition

\(Z \subset S^i(X) \) irreducible of dimension \(2n - i \) \(\Rightarrow \) \(Z \) coisotropic \((T_Z^\perp \subset T_Z) \) and \(\exists f: Z \rightarrow B \), fibers of \(f = \) orbits.

\[\Rightarrow \sigma|_B = f^*\sigma_B, \sigma_B \text{ symplectic.} \]

\[\Rightarrow \sigma^{n-i}|_B \neq 0 \Rightarrow H^0(X, \Omega^p_X) \hookrightarrow H^0(Z, \Omega^p_Z) \text{ for } 0 \leq p \leq n - i. \]

By expected properties of B-B filtration,

\[\Rightarrow S^{n-i}CH_0(X) \rightarrow CH_0(X)/F^{2i+2}. \]
THE END
THE END

Happy birthday, Ron!